根据 (1?0.5n1N)1?f nAn1Anf32?102?215??728500N?728.5kN 即 N?n111?0.5?1?0.59nII-II截面净截面面积为
IIAn?[2e1?(n1?1)a2?e2?n1d0]t?[2?5?(3?1)4.52?7.52?3?2.15]?1.4?29.46cm229.46?102?215N???760100N?760.1kN
n111?0.5?1?0.59nIII2III-III截面净截面面积为 An?(b?nIIId0)t?(25?2?2.15)?1.4?28.98cm
AnIIf因前面I-I截面已有n1个螺栓传走了(n1/n)N的力,故有(1?n1nN?0.5III)III?f nnAn28.98?102?215N???801100N?801.1kN
n1nIII2(1??0.5)(1?1/9?0.5?)9nn构件所能承受的最大轴心力设计值按II-II截面N?728.5kN 三、连接盖板所能承受的轴心力设计值(按V-V截面确定)
vAn?(b?nVd0)t?(25?3?2.15)?2?0.8?29.68cm2 nv?3,n?9AnIIIf29.68?102?215N???765700N?765.7kNnv31?0.5?1?0.59nvAnf
通过比较可见,接头所能承受的最大轴心力设计值为Nmax?728.5kN。与上题比较增大?N?728.5?633.4?95.1kN。 8.解:
单个螺栓受剪承载力设计值 N?nv单个螺栓承压承载力设计值 Nc?dbbv?d24f?2?bv??224?130?1?81.7kN 10?t?fcb?2?1.0?305?b1?61kN 10连接螺栓所能承受的最大轴心力设计值 N?nNmin?4?61?244kN
节点板净截面抗拉承载力:N?10?(400?4?21.5)?215?675kN 故连接的承载力为N?244kN 9.解:
单个螺栓受剪承载力设计值 N?nv单个螺栓承压承载力设计值 Nc?dbbv?d24f?1?bv??224?130?1?40.8kN 10bt?f?c?2?2.0?305?1?122kN 10bb故应按Nmin?Nv?40.8kN进行验算
偏心力F的水平及竖直分力和对螺栓群转动中心的距离分别为:
4?60?48kN,ex?18cm53 V??60?36kN,ey?7.5cm5T?Ney?Vex?48?7.5?36?18?1008kN?cmN?扭矩T作用下螺栓“1”承受的剪力在x,y两方向的分力:
N1Tx?N1Ty?Ty11008?7.5??23.26kN2222x?y4?5?4?7.5?i?iTx11008?5??15.51kN2222x?y4?5?4?7.5?i?i
轴心力N、剪力V作用下每个螺栓承受的水平和竖直剪力:
N1Nx?N48V36V??12kN N1???9kN yn4n4螺栓“1”承受的合力:
2TV2Nmax?(N1Tx?N1Nx)?(N1y?N1y)
bmin ?(23.26?12)?(15.51?9)?42.94kN?N
22?40.8kN(不满足) 10.解:
A?2(20?500)?500?8?24000mm21Ix??8?5003?2?20?500?2602?1435?106mm4 12 ix?Ix1435?106L9600??245mm ?x???39.2A24000ix2451?20?5003?416.7?106mm4 12?416.7?106L9600?132mm ?x???72.724000iy132
Iy?2?iy?IyA?y???0.739?0.7(0.739?0.732)?0.7341N???A?f?0.734?24000?215?3787440N?3787.44kN11.解:
iy?IyA?11080L1000?12.86cm ?y???77.78 67iy12.86Ix?2(Ix1?A?152)?2?(460?67?152)?31070cm4
ix?Ix31070L1000??15.23cm ?x???65.66 2A2?67iy15.23i1?Ix1L46080??2.62cm ?1?o1??30.53 A67i12.62
2?ox??265.662?30.532?72.41x??1???max??y?77.7812.解: 一、第一截面: 1.截面几何特征:
A?2(16?300)?1200?10?21600mm21?10?12003?2?16?300?6082?4.99?109mm4 121Iy?2??16?3003?7.2?107mm412Ix?4.99?109Wx??8.1?106mm3?8100cm3
6167.2?107iy???57.7mm?5.77cmA21600
l112000?y???208iy57.72.梁的稳定系数:
Iy?b?0.69?0.13?l1t112000?16?0.69?0.13??0.76 bh300?1232?235?yt124320Ah??b??b2?)??b??1?(4.4h?yWx????fy?235432021600?1232?208?162 ?0.76??)?0??1?(4.4?123223520828.1?106?? ?0.29二、第二截面: 1.截面几何特征:
A?2(20?240)?1200?10?21600mm21?10?12003?2?20?240?6102?5.0?109mm4 121Iy?2??20?2403?4.6?107mm412Ix?5.0?109Wx??8.1?106mm3?8100cm3
6204.6?107iy???46mmA21600
l112000?y???261iy462.梁的稳定系数:
Iy?b?0.69?0.13?l1t112000?20?0.69?0.13??0.79 bh240?1240?235?yt124320Ah??b??b2?)??b??1?(4.4h?yWx????fy?235432021600?1240?261?202 ?0.79??)?0??1?(4.4?124023526128.1?106?? ?0.23经比较可知,第一截面的稳定性比第二截面的稳定性好。 13.解:
Mmax?1.5P?4000?P?2000?4000P
Mmaz?f ?Mmax?f??b?Wx?bWx4000P?215?0.44?1860?103?P?44kN14.解:
Mmaz1?f ?Mmax?ql2?f??b?Wx?bWx8q?8f?bWx8?215?0.44?1430?10??13.36N/mm?13.36kN/ml2900023
15.解:
均布荷载作用下的最大弯矩设计值:Mmax应用拉弯构件强度计算公式
ql28?62???36kN?m 88N36?106NM??f? ??215?N?437000N?437kN 23An?xWn42?101.05?309?10刚度验算: ?x?16.解:
一、验算在弯矩作用平面内的稳定:
lox600??66.7?[?]?350(满足) ix8.99?x?lox1000??69.4??x?0.842(按a类截面) ix14.4NEx?2EA?2?206?103?76.3?102???3218000N?3218kN 22?x69.4
相关推荐: