∴得到的新抛物线过点(﹣3,0). 故选:B.
【点评】本题考查了抛物线与x轴的交点、二次函数图象上点的坐标特征、二次函数图象与几何变换以及二次函数的性质,根据定弦抛物线的定义结合其对称轴,求出原抛物线的解析式是解题的关键.
10.(4分)某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合).现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图)若有34枚图钉可供选用,则最多可以展示绘画作品( )
A.16张 B.18张 C.20张 D.21张
【分析】分别找出展示的绘画作品展示成一行、二行、三行、四行、五行的时候,34枚图钉最多可以展示的画的数量,比较后即可得出结论.
【解答】解:①如果所有的画展示成一行,34÷(1+1)﹣1=16(张), ∴34枚图钉最多可以展示16张画;
②如果所有的画展示成两行,34÷(2+1)=11(枚)……1(枚), 11﹣1=10(张),2×10=20(张), ∴34枚图钉最多可以展示20张画;
③如果所有的画展示成三行,34÷(3+1)=8(枚)……2(枚), 8﹣1=7(张),3×7=21(张), ∴34枚图钉最多可以展示21张画;
④如果所有的画展示成四行,34÷(4+1)=6(枚)……4(枚), 6﹣1=5(张),4×5=20(张), ∴34枚图钉最多可以展示20张画;
⑤如果所有的画展示成五行,34÷(5+1)=5(枚)……4(枚),
第13页(共28页)
5﹣1=4(张),5×4=20(张), ∴34枚图钉最多可以展示20张画.
综上所述:34枚图钉最多可以展示21张画. 故选:D.
【点评】本题考查了规律型中图形的变化类,观察图形,求出展示的绘画作品展示成一行、二行、三行、四行、五行时,最多可以展示的画的数量是解题的关键.
二、填空题(本题包括6小题,每小题5分,共30分) 11.(5分)因式分解:4x2﹣y2= (2x+y)(2x﹣y) . 【分析】原式利用平方差公式分解即可. 【解答】解:原式=(2x+y)(2x﹣y), 故答案为:(2x+y)(2x﹣y)
【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.
12.(5分)我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为 20 尺,竿子长为 15 尺.
【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,对折索子来量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组,解之即可得出结论.
【解答】解:设索长为x尺,竿子长为y尺, 根据题意得:解得:
.
,
答:索长为20尺,竿子长为15尺. 故答案为:20;15.
【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
第14页(共28页)
13.(5分)如图,公园内有一个半径为20米的圆形草坪,A,B是圆上的点,O为圆心,∠AOB=120°,从A到B只有路
,一部分市民为走“捷径”,踩坏了花
草,走出了一条小路AB.通过计算可知,这些市民其实仅仅少B走了 15 步(假设1步为0.5米,结果保留整数).(参考数据:
≈1.732,π取3.142)
【分析】作OC⊥AB于C,如图,根据垂径定理得到AC=BC,再利用等腰三角形的性质和三角形内角和计算出∠A=30°,则OC=10,AC=10然后利用弧长公式计算出
的长,最后求它们的差即可.
,所以AB≈69(步),
【解答】解:作OC⊥AB于C,如图,则AC=BC, ∵OA=OB,
∴∠A=∠B=(180°﹣∠AOB)=(180°﹣120°)=30°, 在Rt△AOC中,OC=OA=10,AC=∴AB=2AC=20而
的长=
≈69(步);
≈84(步),
OC=10
,
的长与AB的长多15步.
所以这些市民其实仅仅少B走了 15步. 故答案为15.
【点评】本题考查了垂径定理:垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.
第15页(共28页)
14.(5分)等腰三角形ABC中,顶角A为40°,点P在以A为圆心,BC长为半径的圆上,且BP=BA,则∠PBC的度数为 30°或110° . 【分析】分两种情形,利用全等三角形的性质即可解决问题; 【解答】解:如图,当点P在直线AB的右侧时.连接AP. ∵AB=AC,∠BAC=40°, ∴∠ABC=∠C=70°, ∵AB=AB,AC=PB,BC=PA, ∴△ABC≌△BAP, ∴∠ABP=∠BAC=40°,
∴∠PBC=∠ABC﹣∠ABP=30°,
当点P′在AB的左侧时,同法可得∠ABP′=40°, ∴∠P′BC=40°+70°=110°, 故答案为30°或110°.
【点评】本题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.
15.(5分)过双曲线y=(k>0)上的动点A作AB⊥x轴于点B,P是直线AB上的点,且满足AP=2AB,过点P作x轴的平行线交此双曲线于点C.如果△APC的面积为8,则k的值是 12或4 .
【分析】设点A的坐标为(x,),分点P在AB的延长线上、点P在BA的延长线上两种情况,根据比例系数k的几何意义、反比例函数图象上点的坐标特征计
第16页(共28页)
相关推荐: