(Ⅱ)在图2中作DF?DB,交DB于F点。
''
20.【解析】(I)证明1:
22OA?OB?OA?OB,?(OA?OB)2?(OA?OB)2
22OA?2OA?OB?OB?OA?2OA?OB?OB
整理得: OA?OB?0?x1?x2?y1?y2?0
设M(x,y)是以线段AB为直径的圆上的任意一点,则MA?MB?0 即(x?x1)(x?x2)?(y?y1)(y?y2)?0 整理得:x2?y2?(x1?x2)x?(y1?y2)y?0 故线段AB是圆C的直径
证明3:
2OA?OB?OA?OB,?(OA?OB)2?(OA?OB)2
222OA?2OA?OB?OB?OA?2OA?OB?OB
整理得: OA?OB?0?x1?x2?y1?y2?0……(1) 以线段AB为直径的圆的方程为
(x?x1?x22y?y221)?(y?1)?[(x1?x2)2?(y1?y2)2] 224展开并将(1)代入得:x2?y2?(x1?x2)x?(y1?y2)y?0 故线段AB是圆C的直径
x1?x2?x???2(II)解法1:设圆C的圆心为C(x,y),则?
y?y2?y?1??2y12y22 y?2px1,y2?2px2(p?0)?x1x2?4p2212y12y22又因x1?x2?y1?y2?0?x1?x2??y1?y2??y1?y2? 24px1?x2?0,?y1?y2?0?y1?y2??4p2
x?x1?x2yy111?(y12?y22)?(y12?y22?2y1y2)?12?(y2?2p2) 24p4p4pp所以圆心的轨迹方程为y2?px?2p2 设圆心C到直线x-2y=0的距离为d,则
12(y?2p2)?2y||x?2y||y2?2py?2p2||(y?p)2?p2|pd??? ?555p5p|当y=p时,d有最小值pp25,由题设得?p?2. ?555设直
线x-2y+m=0到直线x-2y=0的距离为25,则m??2 5因为x-2y+2=0与y2?px?2p2无公共点,所以当x-2y-2=0与y2?px?2p2仅有一个公共点时,该点到直线x-2y=0的距离最小值为25 5?x?2y?2?0(2)将(2)代入(3)得y2?2py?2p2?2p?0 ?22(3)?y?px?2p???4p2?4(2p2?2p)?0 p?0
?p?2.x1?x2?x???2解法3: 设圆C的圆心为C(x,y),则?
?y?y1?y2??2x1?x2?(y1?y2)|2圆心C到直线x-2y=0的距离为d,则d?
5|y12y22 y?2px1,y2?2px2(p?0)?x1x2?4p2212y12y22又因x1?x2?y1?y2?0?x1?x2??y1?y2??y1?y2? 24p
21.(Ⅰ)当a?1时,f(x)?ln(x?1)?不等式f(x)?2, x?1111ln(x?1)??可化为,所以 x?1x?1ex?1x?1e111111?x?1,即证lnx??x, 要证不等式f(x)?x?1?,即证ln(x?1)?ex?1x?1exe111x?1设h(x)?lnx?,则h?(x)??2?2,
xxxx在(0,1)上,h'(x)<0,h(x)是减函数;在(1,??)上,h'(x)>0,h(x)是增函数.
1所以h(x)?h(1)?1,设?(x)?x,则?(x)是减函数,
e11所以?(x)??(0)?1,所以?(x)?h(x),即lnx??x,
xe11所以当a?1时,不等式f(x)?x?1?成立.
ex?1?1
相关推荐: