11x2?a(a?2)(Ⅱ)f?(x)?,(?) ?2a?[?]?x?1(x?a)2(x?1)(x?a)2x2?a(a?2)当a?2时,?x?0,?f?(x)??0,函数f(x)在(0,??)上是增函数; 2(x?1)(x?a)当0?a?2时,由f?(x)?0,得x2?a(a?2)?0,解得x1??a(2?a)(负值舍去),
x2?a(2?a),当a?2时,f?(x)?0,函数f(x)无极值点;
要使函数f(x)存在两个极值点,必有0?a?2,且极值点必为x1??a(2?a),
x2?a(2?a),又由函数定义域知,x??1,则有?a(2?a)??1,即
a(2?a)?1,化为(a?1)2?0,所以a?1,
所以,函数f(x)存在两个极值点时,正数a的取值范围是(0,1)?(1,2).
?x1?x2?0,由(?)式可知,?
x?x?a(a?2),?122a2af(x1)?f(x2)?ln(1?x1)??ln(1?x2)?x1?ax2?a2a(x2?a?x1?a)?ln[(1?x1)(1?x2)]?(x1?a)(x2?a)
2a(x1?x2?2a)?ln(1?x1?x2?x1?x2)?x1x2?a(x1?x2)?a24a222?ln[(a?1)]??ln[(a?1)]??2,a(a?2)?a2a?122?2?0, 不等式f(x1)?f(x2)?4化为ln[(a?1)]?a?1令a?1?t(a?(0,1)?(1,2)),所以t?(?1,0)?(0,1),
22令g(t)?ln(t)??2,t?(?1,0)?(0,1).
t22当t?(?1,0)时,g(t)?2ln(?t)??2,ln(?t)?0,?0,所以g(t)?0,不合题意;
tt2112(t?1)?0,所以 当t?(0,1)时,g(t)?2lnt??2,g?(t)?2??2?(?2)?tttt22g(t)在(0,1)是减函数,所以g(t)?g(1)?2ln1??2?0,适合题意,即a?(1,2).
1综上,若f(x1)?f(x2)?4,此时正数a的取值范围是(1,2). ……………………12分
2?x??cos?,?m??cos(???0),22.解:(Ⅰ)由题意知:?和?
y??sin?,n??sin(???).?0??m??cos?cos?0??sin?sin?0,即?
n??sin?cos???cos?sin?,00?所以??m?xcos?0?ysin?0,?n?xsin? 0?ycos? ……5分
0.??m?22(Ⅱ)由题意知??2x?2y,?2x?2 ??n?22y,所以(222x?2y)(22x?22y)?2. 整理得x22?y22?1. ……10分
23.解:(1)证法一:
?a?b?c?2?(a?b?c)?2ab?2bc?2ca?(a?b?c)?(a?b)?(b?c)?(c?a)?3
?a?b?c?3 ……5分
证法二:
由柯西不等式得:
?a?b?c?2?(12?12?12)[(a)2?(b)2?(c)2]?3,
?a?b?c?3.
(2)证法一:
43a?1?(3a?1)?243a?1(3a?1)?4,?43a?1?3?3a 4?3?3b,4同理得3b?13c?1?3?3c,
以上三式相加得,
4(13a?1?13b?1?13c?1)?9?3(a?b?c)?6,
?1113???3a?13b?13c?12. ……10分
证法二:
由柯西不等式得:
111??)3a?13b?13c?1111?(3a?1??3b?1??3c?1?)2?9[(3a?1)?(3b?1)?(3c?1)](3a?13b?1?13a?1?13b?1?133c?1?2.
3c?1欢迎访问 “高中试卷网”——http://sj.fjjy.org
相关推荐: