lead-free
piezoelectric ceramics [J]. J Am Ceram Soc, 2008, 91(1): 319–321. [101] FU Jian, ZUO Ruzhong, WU Yuping, et al. Phase transition and electrical properties of Li-and Ta-substituted (Na0.52K0.48)(Nb0.96Sb0.04)O3
piezoelectric ceramics [J]. J Am Ceram Soc, 2008, 91(11): 3771–3773. [102] WU Jiagang, XIAO Dingquan, WANG Yuanyu, et al. Effects of K content on the dielectric, piezoelectric, and ferroelectric properties of
0.95(KxNa1–x)NbO3–0.05LiSbO3 lead-free ceramics [J]. J Appl Phys, 2008, 103: 024102.
[103] CHANG Yunfei, YANG Zupei, MA Difei, et al. Phase transitional behavior, microstructure, and electrical properties in Ta-modified ((K0.458Na0.542)0.96Li0.04)NbO3 lead-free piezoelectric ceramics [J]. J
Appl Phys, 2008, 104: 024109.
[104] ZHAO Pei, ZHANG Boping, LI Jingfeng. Enhanced dielectric and piezoelectric properties in LiTaO3-doped lead-free (K,Na)NbO3 ceramics by optimizing sintering temperature [J]. Scripta Mater, 2008, 58: 429–432.
[105] ZUO Ruzhong, FU Jian, Lü Danya. Phase Transformation and Tunable Piezoelectric Properties of Lead-Free (Na0.52K0.48–xLix)(Nb1–x–ySbyTax)O3
System [J]. J Am Ceram Soc, 2009, 92(1): 283–285.
[106] CHANG Yunfei, YANG Zupei, MA Difei, et al. Phase coexistence and high electrical properties in (KxNa0.96–xLi0.04)×(Nb0.85Ta0.15)O3 piezoelectric
ceramics [J]. J Appl Phys, 2009, 105: 054101.
[107] FU Jian, ZUO Ruzhong, WANG Xiaohui, et al. Polymorphic phase transition and enhanced piezoelectric properties of LiTaO3-modified (Na0.52K0.48)(Nb0.93Sb0.07)O3 lead-free ceramics [J]. J Phys D: Appl Phys, 2009, 42: 012006.
[108] WANG Ke, LI Jingfeng, LIU Nan. Piezoelectric properties of low-temperature sintered Li-modified (Na, K)NbO3 lead-free ceramics [J]. Appl Phys Lett, 2008, 93: 092904.
[109] ZHAO Pei, ZHANG Boping. Effect of Ta content on phase structure and electrical properties of piezoelectric lead-free ((Na0.535K0.480)0.942.
第 21 页
Li0.058)(Nb1–xTax)O3 ceramics [J]. J Am Ceram Soc, 2008, 91(10): 3440–3443.
[110] DAI Yejing, ZHANG Xiaowen, ZHOU Guoyuan. Phase transitional behavior in K0.5Na0.5NbO3–LiTaO3 ceramics [J]. Appl Phys Lett, 2007, 90: 262903.
[111] WANG Ke, LI Jingfeng. Analysis of crystallographic evolution in (Na,K)NbO3-based lead-free piezoceramics by X-ray diffraction [J]. Appl Phys Lett, 2007, 91: 262902.
[112] ZHANG Shujun, XIA Ru, SHROUT T R. Modified (K0.5Na0.5)NbO3
based lead-free piezoelectrics with broad temperature usage range [J]. Appl Phys Lett, 2007, 91: 132913. [113] WU Jiagang, XIAO Dingquan, WANG Yuanyu, et al. Improved temperature stability of CaTiO3-modified ((K0.5Na0.5)0.96Li0.04)(Nb0.91Sb0.05. Ta0.04)O3 lead-free piezoelectric ceramics [J]. J Appl Phys, 2008, 104: 024102.
[114] WANG Yuanyu, WU Jiagang, XIAO Dingquan, et al. Electrical properties
and temperature stability of a new kind of lead-free piezoelectric ceramics [J]. J Phys D: Appl Phys, 2008, 41: 245401.
[115] WU Jiagang, XIAO Dingquan, WANG Yuanyu, et al. CaTiO3-modified ((K0.5Na0.5)0.94Li0.06)(Nb0.94Sb0.06)O3 lead-free piezoelectric ceramics
with improved temperature stability [J]. Scripta Mater, 2008, 59: 750– 752.
[116] WU Jiagang, XIAO Dingquan, WANG Yuanyu, et al. Microstructure and electrical properties of (Li, Ag, Ta, Sb)-modified (K0.50Na0.50)NbO3 lead-free ceramics with good temperature stability [J]. J Phys D: Appl Phys, 2008, 41: 125405.
[117] HAGH N M, JADIDIAN B, ASHBAHIAN E, et al. Lead-free piezoelectric ceramic transducer in the donor-doped K1/2Na1/2NbO3 solid
solution system [J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2008, 55(1): 214–224.
[118] WU Lang, XIAO Dingquan, WU Jiagang, et al. Good temperature stability of K0.5Na0.5NbO3 based lead-free ceramics and their applications
in buzzers [J]. J Eur Ceram Soc, 2008, 28: 2963–2968.
[119] GUO Mingsen, LAM K H, LIN D M, et al. A Rosen-type piezoelectric transformer employing lead-free K0.5Na0.5NbO3 ceramics [J]. J Mater
第 22 页
Sci, 2008, 43: 709–714.
[120] LIN Dunmin, GUO M S, LAM K H, et al. Lead-free piezoelectric ceramic (K0.5Na0.5)NbO3 with MnO2 and K5.4Cu1.3Ta10O29 doping for piezoelectric transformer application [J]. Smart Mater Struct, 2008, 17: 035002.
[121] WU D W, CHEN R M, ZHOU Q F, et al. Lead-free piezoelectric
ceramics for high-frequency ultrasound transducers [J]. IEEE Ultrason Symp, 2007:214–224.
[122] LEE T, KWOK K W, LI H L, et al. Lead-free alkaline niobate-based transducer for ultrasonic wirebonding applications [J]. Sens Actuators A, 2009, 150: 267–271.
[123] WU D W, CHEN R M, ZHOU Q F, et al. Lead-free KNLNT piezoelectric ceramics for high-frequency ultrasonic transducer application [J]. Ultrason, 2009, 49: 395–398.
[124] SHEN Zongyang, ZHEN Yuhua, WANG Ke, et al. Influence of sintering temperature on grain growth and phase structure of compositionally
optimized high-performance Li/Ta-modified (Na,K)NbO3 ceramics [J]. J Am Ceram Soc, 2009, 92(8): 1748–1752.
[125] LI Enzhu, KAKEMOTO H, WADA S, et al. Enhancement of Qm by Codoping of Li and Cu to potassium sodium niobate lead-free ceramics
[J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2008, 55(5): 980– 987.
[126] WALLER D, CHEN J, GURURAJA T R. Requirements of piezoelectric materials for medical ultrasound transducers [J]. Proc Tenth IEEE Intl Symposium Appl Ferroelec, 1996, 2: 565–568.
[127] SHEN Zongyang, XU Ying, LI Jingfeng. Fabrication and electromechanical
properties of microscale 1–3-type piezoelectric composites
using (Na,K)NbO3-based Pb-free piezoceramics [J]. J Appl Phys, 2009, 105: 104103.
第 23 页
相关推荐: