4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.
四、随机变量的数字特征 考试内容
随机变量的数学期望(均值)、方差、标准差及其性质 随机变量函数的数学期望 矩、协方差、相关系数及其性质
考试要求
1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.
2.会求随机变量函数的数学期望.
五、大数定律和中心极限定理 考试内容 切比雪夫(Chebyshev)不等式 切比雪夫大数定律 伯努利(Bernoulli)大数定律 辛钦(Khinchine)大数定律 棣莫弗-拉普拉斯(De Moivre-Laplace)定理 列维-林德伯格(Levy-Lindberg)定理
考试要求
1.了解切比雪夫不等式.
2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).
3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理).
六、数理统计的基本概念
考试内容
总体 个体 简单随机样本 统计量 样本均值 样本方差和样本矩 ?分布 t分布 F分布 分位数 正态总体的常用抽样分布
考试要求
1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为
21nS?(Xi?X)2 ?n?1i?122.了解?分布、t分布和F分布的概念及性质,了解上侧?分位数的概念并会查表计算.
3.了解正态总体的常用抽样分布.
七、参数估计 考试内容
点估计的概念 估计量与估计值 矩估计法 最大似然估计法 估计量的评选标准 区间估计的概念 单个正态总体的均值和方差的区间估计 两个正态总体的均值差和方差比的区间估计
9
2
考试要求
1.理解参数的点估计、估计量与估计值的概念.
2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.
3.了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.
4、理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.
八、假设检验 考试内容
显著性检验 假设检验的两类错误 单个及两个正态总体的均值和方差的假设检验 考试要求
1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误.
2.掌握单个及两个正态总体的均值和方差的假设检验.
10
相关推荐: