∴m?-4 ······························· 2分 由 (x?1)2-4?0得A(3,0),C(-1,0)
∴3k -3= 0,∴k =1. ······················ 4分 (2)①∵BD∥x轴且B,D都在抛物线y?(x?1)2-4上,
∴点D与点B关于对称轴直线x =1对称,即D为(2,-3)
∴直线CD的解析式为y =-x-1,∴点E为(0,-1) ········· 6分 ∴ΔOCE为等腰直角三角形
∴∠BCD+∠OBC=∠CEO=45? ··················· 8分 ②当直线BP与x轴的交点F在点A的左侧时, ∵A(3,0),B(0,-3), ∴ΔAOB为等腰直角三角形, ∴∠ABF+∠OBF=∠ABO=45?
C ∵∠BCD+∠OBC=45?且∠ABP=∠BCD ∴∠OBF=∠OBC ∴ΔOBF≌ΔOBC ∴OF=OC=1,即F(1,0) ∴直线BF的解析式为y=3x-3 联立方程组得
B D O E F A ?x?0x?5y?3x?3,解得y1??3(舍),y2?12 2y?x?2x?312??∴P点坐标为(5,12) ····················· 10分 当直线BP与x轴的交点F在点A的右侧时, ∵∠ABF+∠DBF=∠ABD=45? ∵∠BCD+∠OBC=45?且∠ABF=∠BCD ∴∠DBF=∠OBC
C ∵∠DBF=∠OFB ∴∠OFB=∠OBC ∴tan∠OFB=tan∠OBC=∴OF=9,即F(9,0) ∴直线BF的解析式为y=
O E A F 1 31x-3 3
P B D
?y?1x?3?x?7?3?23x1?0联立方程组得?,解得 (舍),?y1??32y?x2?2x?3y?-????29?∴P点坐标为(,?7320) ····················· 12分 926.解:(1)正方形 ···························· 3分
(2)连结BD,AE,∵∠BAC=90°∴BD为⊙O的直径,∴∠BED=∠CED=90?,
∵四边形ABED为圆美四边形,∴BD⊥AE, ∴∠ABD+∠BAE=90?, ∵∠CAE+∠BAE=90?, ∴∠ABD=∠CAE,∴弧AD=弧DE,∴AD=DE ∴在等腰直角ΔCDE中CD?∴CD?∴
A D 2DE,
B 图1 E C 2AD,∴AC?(2?1)AD,
AB7分 ?2?1 ························
DE(3)①∵PA⊥PD,PB⊥PE,∴∠APD=∠BPE=90?,
∵∠PBC=∠ADP,∴ΔAPD∽ΔEPB, ·················· 8分 ∴
APPDAPEP,∴, ??EPPBPDPB又∵∠APD+∠DPE=∠BPE+∠DPE,即∠APE=∠DPB
∴ΔAPE∽ΔDPB, ······················· 10分 ∴∠AEP=∠DBP,
又∵∠DBP+∠PGB=90?,∠PGB=∠EGF, ∴∠AEP+∠EGF=90?即∠BFE=90?, ∴BD⊥AE,又∵A,B,E,D在同一个圆上,
∴四边形ABED为圆美四边形 ··················· 11分
②∵BD⊥AE,∴AD+BE=AF+FD+BF+EF,AB+DE=AF+BF+DF+EF
∴AD+BE=AB+DE, ······················· 12分 ∵A,B,E,D在同一个圆上,∴∠CDE=∠CBA,∵∠C=∠C,∴ΔCDE∽ΔCBA,
2
2
2
22
2
2
2
2
2
2
2
2
2
2
2
∴
DECD3 ······················· 13分 ??ABBC3设PA =x,PE =8-x,DE =y,AB =3y ∵?=30?,∠APD=∠BPE=90? ∴AD=2x,BE=2(8-x),
B ∴y2?(3y)2?(2x)2?[2(8?x)]2,
∴y2?x2?(8?x)2?2x2?16x?64?2(x?4)2?32,∵2>0
x=4时y取到最小值42即DE的最小值为42
14分
A D P G F E C 图2 ∴当
相关推荐: