第一范文网 - 专业文章范例文档资料分享平台

2019年浙江省宁波市中考数学试卷含答案解析(Word版)

来源:用户分享 时间:2025/6/4 5:14:30 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

【答案】解:(1)①如答图,连接DM, MC,

∵OM是⊙P的直径,∴?MDO??MCO?90?. ∵?AOB?90?,∴MD∥OA,MC∥OB. ∵点M是AB的中点,

∴点D是AB的中点,点C是OA的中点. ∵点M的坐标为(3,4), ∴OB?2MC?8, OA?2MD?6.

∴点B的坐标为(0,8),点A的坐标为(6,0). ②在Rt?AOB中,∵OA?6, OB?8, ∴由勾股定理,得AB?10. ∵点M是AB的中点,∴BM?1AB?5. 2BMBO. ?BDBE∵?BOM??BED,?OBM??EBD,∴?OBM∽?EBD.∴∴BE?BO?BD4?8??6.4.∴ME?BE?BM?6.4?5?1.4. BM5(2)如答图,连接DP,

OK?3,∴OK?3MK, OM?4MK.∴PK?MK. MK∵OP?PM, BD?DO,∴DP是?BOM的中位线. ∴DP∥BM.∴

?PDK??MEK

又∵?PKD??MKE.∴?DPK≌?EMK?AAS?.∴DK?KE.

17

∵OM是⊙P的直径,∴OM?DE. ∴cos?DPK?∵DP?PM?2ME,∴cos?DPK?PK. PD1.∴?DPK?60?, ?DOM?30?. 2∵在Rt?AOB中,点M是AB的中点,∴BM?MO. ∴?OBA??DOM?30?. (3)y关于x的函数解析式为y?2. 21?x【考点】圆的综合题;圆周角定理;平行的性质;点的坐标;勾股定理;相似三角形的判定和性质;三角形中位线定理;全等三角形的判定和性质;锐角三角函数定义;特殊角的三角函数值;等腰三角形的性质;由实际问题列函数关系式;方程思想的应用.

【分析】(1)①连接DM, MC,由三角形中位线定理求得A,B两点的坐标.

②要求ME的长,由ME?BE?BM知只要求出BE和BM的长即可,BM的长可由AB长的

一半求得,而AB长可由勾股定理求得;BE的长可由?OBM∽?EBD的对应边成比例列式求得.

(2)连接DP,求得?DPK≌?EMK?AAS?得到DK?KE,由DP?PM?2M得E到

co?sDPK?1,即?DPK?60?,因此求得?OBA??DOM?30?. 2(3)如答图,连接PC,

∵OM是⊙P的直径,∴?NEO?90?. ∵tan?OBA?x(0

1?x2∵在Rt?OME中,?1?m??x?m,∴m?.

21?x2111?m2∴ME?1?m?. , DP?BM?m?22242221?x2PKDP1?x24???∵?DPK∽?MKE,∴. KMME1?x22?1?x2?222MPPK?MK1?x?2?1?x?3?x2???∴. 22MKMK2?1?x?2?1?x?OM2MP3?x2∵点P是MO的中点,∴. ??MKMK1?x222OKOK?MK?3?x???1?x?2???∴y?. MKMK1?x21?x2 18

∴y关于x的函数解析式为y?

2. 21?x 19

2019年浙江省宁波市中考数学试卷含答案解析(Word版).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c2e07b6vypb76vac3ljxx41z4g1sgcd0186f_5.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top