第一范文网 - 专业文章范例文档资料分享平台

初中数学几何的动点问题专题练习

来源:用户分享 时间:2025/5/24 20:55:21 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

当MP?MN时,如图4,这时MC?MN?MP?3.

此时,x?EP?GM?6?1?3?5?3.

当NP?NM时,如图5,∠NPM?∠PMN?30?.

则∠PMN?120?,又∠MNC?60?, ∴∠PNM?∠MNC?180?.

因此点P与F重合,△PMC为直角三角形. ∴MC?PMg tan30??1.此时,x?EP?GM?6?1?1?4.

综上所述,当x?2或4或5?3时,△PMN为等腰三角形. ···················· 10分

??9(09兰州)如图①,正方形 ABCD中,点A、B的坐标分别为(0,10),(8,4), 点C在第一象限.动点P在正方形 ABCD的边上,从点A出发沿A→B→C→D匀速运动,

同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,

设运动的时间为t秒.

(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;

(2)求正方形边长及顶点C的坐标;

(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标; (4)如果点P、Q保持原速度不变,当点P沿A→B→C→D匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由.

解:(1)Q(1,0) ······················································································· 1分 点P运动速度每秒钟1个单位长度. ·········································································································· 2分 (2) 过点B作BF⊥y轴于点F,BE⊥x轴于点E,则BF=8,OF?BE?4. ∴AF?10?4?6.

y 在Rt△AFB中,AB?82?62?10 3分 过点C作CG⊥x轴于点G,与FB的延长线交于点H. ∵?ABC?90?,AB?BC ∴△ABF≌△BCH.

DCAMFONQPHGxBE ∴BH?AF?6,CH?BF?8. ∴OG?FH?8?6?14,CG?8?4?12.

∴所求C点的坐标为(14,12). 4分 (3) 过点P作PM⊥y轴于点M,PN⊥x轴于点N, 则△APM∽△ABF. ∴

APAMMPtAMMP??. ??. ?ABAFBF10683434 ∴AM?t,PM?t. ∴PN?OM?10?t,ON?PM?t.

5555设△OPQ的面积为S(平方单位)

13473∴S??(10?t)(1?t)?5?t?t2(0≤t≤10) ················································· 5分

251010说明:未注明自变量的取值范围不扣分.

473<0 ∴当t??时, △OPQ的面积最大. ························· 6分 ?36102?(?)104710 ∵a?? 此时P的坐标为(

9453,) . ····································································· 7分 15105295(4) 当 t?或t?时, OP与PQ相等. ················································· 9分

31310(09临沂)数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.?AEF?90o,且EF交正方形外角?DCG的平行线CF于点F,求证:AE=EF.

经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE?EF.

在此基础上,同学们作了进一步的研究:

(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;

(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.

A

D

F

B E C 图1

G

B

E C 图2 A

D

F G

B 图3

C E G

F A

D

解:(1)正确.····················································· (1分) 证明:在AB上取一点M,使AM?EC,连接ME. (2分)

D A

?BM?BE.??BME?45°,??AME?135°.

F M QCF是外角平分线,

??DCF?45°,

B E C G ??ECF?135°.

??AME??ECF.

Q?AEB??BAE?90°,?AEB??CEF?90°, ??BAE??CEF.

. ··································································· (5分) ?△AME≌△BCF(ASA)

························································································ (6分) ?AE?EF. ·

(2)正确. ····················································· (7分) 证明:在BA的延长线上取一点N. 使AN?CE,连接NE. ··································· (8分)

N F ?BN?BE. D A ??N??PCE?45°. Q四边形ABCD是正方形, ?AD∥BE.

B C E G

??DAE??BEA. ??NAE??CEF.

. ································································· (10分) ?△ANE≌△ECF(ASA)

······················································································ (11分) ?AE?EF. ·

11(09天津)已知一个直角三角形纸片OAB,其中

?AOB?90°,OA?2,OB?4.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D. (Ⅰ)若折叠后使点B与点A重合,求点C的坐标; y

B

x O A (Ⅱ)若折叠后点B落在边OA上的点为B?,设OB??x,OC?y,试写出y关于x的函数解析式,并确定y的取值范围;

B y x O A

(Ⅲ)若折叠后点B落在边OA上的点为B?,且使B?D∥OB,求此时点C的坐标. y B O A x

解(Ⅰ)如图①,折叠后点B与点A重合, 则△ACD≌△BCD.

设点C的坐标为?0,m??m?0?. 则BC?OB?OC?4?m. 于是AC?BC?4?m.

在Rt△AOC中,由勾股定理,得AC?OC?OA, 即?4?m??m2?22,解得m?22223. 2?3??点C的坐标为?0,?. ··················································································· 4分

2??(Ⅱ)如图②,折叠后点B落在OA边上的点为B?,

则△B?CD≌△BCD. 由题设OB??x,OC?y, 则B?C?BC?OB?OC?4?y,

在Rt△B?OC中,由勾股定理,得B?C?OC?OB?.

222??4?y??y2?x2,

12··························································································· 6分 x?2 ·

8由点B?在边OA上,有0≤x≤2,

1? 解析式y??x2?2?0≤x≤2?为所求.

8即y??2? Q当0≤x≤2时,y随x的增大而减小,

3···································································· 7分 ?y的取值范围为≤y≤2. ·

2(Ⅲ)如图③,折叠后点B落在OA边上的点为B??,且B??D∥OB. 则?OCB????CB??D. 又Q?CBD??CB??D,??OCB????CBD,有CB??∥BA. ?Rt△COB??∽Rt△BOA. OB??OC?有,得OC?2OB??. ·································································· 9分 OAOB在Rt△B??OC中,

设OB???x0?x?0?,则OC?2x0. 由(Ⅱ)的结论,得2x0??12x0?2, 8解得x0??8?45.Qx0?0,?x0??8?45. ?点C的坐标为0,85?16. ··································································· 10分

??12(09太原)问题解决 F

M D 如图(1),将正方形纸片ABCD折叠,使点B落在CD边A 上一点E(不与点C,D重合),压平后得到折痕MN.当CE1AME 的值. ?时,求

CD2BN B C 方法指导: N

为了求得AM的值,可先求BN、AM的长,不妨设:AB=2 图(1)

BN

类比归纳

CE1AMCE1AM在图(1)中,若则的值等于 ;若则的?,?,CD3BNCD4BNCE1AM值等于 ;若,则的值等于 .(用含?(n为整数)

CDnBNn的式子表示) 联系拓广 如图(2),将矩形纸片ABCD折叠,使点B落在CD边上一点E(不与点C,DAB1CE1AM重合),压平后得到折痕MN,设则的值等??m?1?,?,BCmCDnBN于 .(用含m,n的式子表示) F

M D A

E

B C N

图(2)

解:方法一:如图(1-1),连接BM,EM,BE.

F M A D

B

N 图(1-1)

C E

搜索更多关于: 初中数学几何的动点问题专题练习 的文档
初中数学几何的动点问题专题练习.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c2fbp389bzs5s23r4b01m9s4tl8lgrm00e13_3.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top