第一范文网 - 专业文章范例文档资料分享平台

2018年中考数学真题分类汇编(第三期)专题35尺规作图试题(含解析)

来源:用户分享 时间:2025/9/12 11:40:35 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

尺规作图

一.填空题

1.(2018·辽宁省葫芦岛市) 如图,OP平分∠MON,A是边OM上一点,以点A为圆心、大于点A到ON的距离为半径作弧,交ON于点B.C,再分别以点B.C为圆心,大于BC的长为半径作弧,两弧交于点D.作直线AD分别交OP、ON于点E.F.若∠MON=60°,EF=1,则OA= 2

【解答】解:由作法得AD⊥ON于F,∴∠AOF=90°.∵OP平分∠MON,∴∠EOF=∠MON=×60°=30°.在Rt△OEF中,OF=∴OA=2OF=2故答案为:2

. .

EF=

.在Rt△AOF中,∠AOF=60°,

2.(2018·辽宁省抚顺市)(3.00分)如图,?ABCD中,AB=7,BC=3,连接AC,分别以点A和点C为圆心,大于AC的长为半径作弧,两弧相交于点M,N,作直线MN,交CD于点E,连接AE,则△AED的周长是 10 .

【分析】根据平行四边形的性质可知AD=BC=3,CD=AB=7,再由垂直平分线的性质得出AE=CE,据此可得出结论

【解答】解:∵四边形ABCD是平行四边形,AB=7,BC=3, ∴AD=BC=3,CD=AB=7.

∵由作图可知,MN是线段AC的垂直平分线, ∴AE=CE,

∴△ADE的周长=AD+(DE+AE)=AD+CD=3+7=10.

1

故答案为:10.

【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法是解答此题的关键. 3.(2018·吉林长春·3分)如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为 37 度.

【分析】根据等腰三角形的性质以及三角形内角和定理在△ABC中可求得∠ACB=∠ABC=74°,根据等腰三角形的性质以及三角形外角的性质在△BCD中可求得∠CDB=∠CBD=∠ACB=37°. 【解答】解:∵AB=AC,∠A=32°, ∴∠ABC=∠ACB=74°, 又∵BC=DC,

∴∠CDB=∠CBD=∠ACB=37°. 故答案为:37.

【点评】本题主要考查等腰三角形的性质,三角形外角的性质,掌握等边对等角是解题的关键,注意三角形内角和定理的应用. 二.解答题

1. (2018·湖北江汉·5分)图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O,M,N,A,B均在格点上,请仅用无刻度直尺在网格中完成下列画图.

(1)在图①中,画出∠MON的平分线OP;

(2)在图②中,画一个Rt△ABC,使点C在格点上.

【分析】(1)构造全等三角形,利用全等三角形的性质即可解决问题; (2)利用菱形以及平行线的性质即可解决问题; 【解答】解:(1)如图所示,射线OP即为所求.

2

(2)如图所示,点C即为所求;

2.(2018·湖北咸宁·8分)已知:∠AOB. 求作:∠A'O'B',使∠A'O′B'=∠AOB

(1)如图1,以点O为圆心,任意长为半径画弧,分别交OA,OB于点C.D;

(2)如图2,画一条射线O′A′,以点O′为圆心,OC长为半径间弧,交O′A′于点C′; (3)以点C′为圆心,CD长为半径画弧,与第2步中所而的弧交于点D′; (4)过点D′画射线O′B',则∠A'O'B'=∠AOB. 根据以上作图步骤,请你证明∠A'O'B′=∠AOB.

【答案】证明见解析.

【解析】【分析】由基本作图得到OD=OC=O′D′=O′C′,CD=C′D′,则根据“SSS“可证明△OCD≌△O′C′D′,然后利用全等三角形的性质可得到∠A'O'B′=∠AOB. 【详解】由作法得OD=OC=O′D′=O′C′,CD=C′D′,

在△OCD和△O′C′D′中

∴△OCD≌△O′C′D′,∴∠COD=∠C′O′D′,即∠A'O'B′=∠AOB.

【点睛】本题考查了基本作图——作一个角等于已知角,全等三角形的判定与性质,熟练掌握基本作图的基本方法以及利用SSS判定三角形全等的方法是解题的关键.

3.(2018·江苏常州·10分)(1)如图1,已知EK垂直平分BC,垂足为D,AB与EK相交于点F,连接CF.求证:∠AFE=∠CFD.

(2)如图2,在Rt△GMN中,∠M=90°,P为MN的中点.

①用直尺和圆规在GN边上求作点Q,使得∠GQM=∠PQN(保留作图痕迹,不要求写作法); ②在①的条件下,如果∠G=60°,那么Q是GN的中点吗?为什么?

3

【分析】(1)只要证明FC=FB即可解决问题;

(2)①作点P关于GN的对称点P′,连接P′M交GN于Q,连接PQ,点Q即为所求. ②结论:Q是GN的中点.想办法证明∠N=∠QMN=30°,∠G=∠GMQ=60°,可得QM=QN,QM=QG; 【解答】(1)证明:如图1中,

∵EK垂直平分线段BC, ∴FC=FB, ∴∠CFD=∠BFD, ∵∠BFD=∠AFE, ∴∠AFE=∠CFD.

(2)①作点P关于GN的对称点P′,连接P′M交GN于Q,连接PQ,点Q即为所求.

②结论:Q是GN的中点. 理由:设PP′交GN于K. ∵∠G=60°,∠GMN=90°, ∴∠N=30°, ∵PK⊥KN, ∴PK=KP′=PN, ∴PP′=PN=PM,

4

∴∠P′=∠PMP′,

∵∠NPK=∠P′+∠PMP′=60°, ∴∠PMP′=30°,

∴∠N=∠QMN=30°,∠G=∠GMQ=60°, ∴QM=QN,QM=QG, ∴QG=QN, ∴Q是GN的中点.

【点评】本题考查作图﹣复杂作图、线段的垂直平分线的性质、直角三角形斜边中线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.

5

2018年中考数学真题分类汇编(第三期)专题35尺规作图试题(含解析).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c2hpmp64rh20fvqu4yw276b8ve00zl600v0j_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top