2012年各地中考数学压轴题精选精析40例
【1.2012临沂】
26.如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置. (1)求点B的坐标;
(2)求经过点A.O、B的抛物线的解析式;
(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.
考点:二次函数综合题;分类讨论。 解答:解:(1)如图,过B点作BC⊥x轴,垂足为C,则∠BCO=90°, ∵∠AOB=120°, ∴∠BOC=60°, 又∵OA=OB=4,
∴OC=OB=×4=2,BC=OB?sin60°=4×∴点B的坐标为(﹣2,﹣2); (2)∵抛物线过原点O和点A.B, ∴可设抛物线解析式为y=ax+bx, 将A(4,0),B(﹣2.﹣2)代入,得
,
2
=2,
解得,
∴此抛物线的解析式为y=﹣
x2+
x
(3)存在,
如图,抛物线的对称轴是x=2,直线x=2与x轴的交点为D,设点P的坐标为(2,y), ①若OB=OP, 则22+|y|2=42, 解得y=±2,
当y=2时,在Rt△POD中,∠PDO=90°,sin∠POD==,
∴∠POD=60°,
∴∠POB=∠POD+∠AOB=60°+120°=180°, 即P、O、B三点在同一直线上, ∴y=2
不符合题意,舍去,
) |2=42, ),
|,
2
∴点P的坐标为(2,﹣2②若OB=PB,则42+|y+2解得y=﹣2, 故点P的坐标为(2,﹣2
2
2
2
③若OP=BP,则2+|y|=4+|y+2解得y=﹣2,
故点P的坐标为(2,﹣2),
综上所述,符合条件的点P只有一个,其坐标为(2,﹣2
),
【2.2012菏泽】
21.如图,在平面直角坐标系中放置一直角三角板,其顶点为A(0,1),B(2,0),O(0,0),将此三角板绕原点O逆时针旋转90°,得到△A′B′O. (1)一抛物线经过点A′、B′、B,求该抛物线的解析式;
(2)设点P是在第一象限内抛物线上的一动点,是否存在点P,使四边形PB′A′B的面积是△A′B′O面积4倍?若存在,请求出P的坐标;若不存在,请说明理由. (3)在(2)的条件下,试指出四边形PB′A′B是哪种形状的四边形?并写出四边形PB′A′B的两条性质.
考点:二次函数综合题。 解答:解:(1)△A′B′O是由△ABO绕原点O逆时针旋转90°得到的,
又A(0,1),B(2,0),O(0,0), ∴A′(﹣1,0),B′(0,2).
设抛物线的解析式为:y?ax2?bx?c(a?0), ∵抛物线经过点A′、B′、B,
?0?a?b?c?a??1??,解之得?b?1, ??2?c?0?4a?2b?c?c?2???满足条件的抛物线的解析式为y??x?x?2..
2(2)∵P为第一象限内抛物线上的一动点,
设P(x,y),则x>0,y>0,P点坐标满足y??x2?x?2. 连接PB,PO,PB′,
?S四边形PB?A?B ?S?B?OA? ?S?PB?O ?S?POB ?12?1?2+212?2?x+12?2?y
2?x?(?x?x?2)?1??x?2x?3.
假设四边形PB?A?B的面积是?A?B?O面积的4倍,则 2?x?2x?3?4,
即x2?2x?1?0,解之得x?1,此时y??12?1?2?2,即P(1,2).
∴存在点P(1,2),使四边形PB′A′B的面积是△A′B′O面积的4倍. (3)四边形PB′A′B为等腰梯形,答案不唯一,下面性质中的任意2个均可. ①等腰梯形同一底上的两个内角相等;②等腰梯形对角线相等; ③等腰梯形上底与下底平行;④等腰梯形两腰相等. 或用符号表示:
①∠B′A′B=∠PBA′或∠A′B′P=∠BPB′;②PA′=B′B;③B′P∥A′B;④B′A′=PB.
【3. 2012义乌市】
24.如图1,已知直线y=kx与抛物线y=交于点A(3,6).
(1)求直线y=kx的解析式和线段OA的长度;
(2)点P为抛物线第一象限内的动点,过点P作直线PM,交x轴于点M(点M、O不重合),交直线OA于点Q,再过点Q作直线PM的垂线,交y轴于点N.试探究:线段QM与线段QN的长度之比是否为定值?如果是,求出这个定值;如果不是,说明理由;
(3)如图2,若点B为抛物线上对称轴右侧的点,点E在线段OA上(与点O、A不重合),点D(m,0)是x轴正半轴上的动点,且满足∠BAE=∠BED=∠AOD.继续探究:m在什么范围时,符合条件的E点的个数分别是1个、2个?
考点:二次函数综合题。
解答:解:(1)把点A(3,6)代入y=kx 得; ∵6=3k,
∴k=2, ∴y=2x.(2012义乌市) OA=(2)
.…(3分)
是一个定值,理由如下:
如答图1,过点Q作QG⊥y轴于点G,QH⊥x轴于点H. ①当QH与QM重合时,显然QG与QN重合, 此时
②当QH与QM不重合时,
∵QN⊥QM,QG⊥QH
不妨设点H,G分别在x、y轴的正半轴上, ∴∠MQH=∠GQN, 又∵∠QHM=∠QGN=90° ∴△QHM∽△QGN…(5分), ∴
,
. …(7分)①①
;
当点P、Q在抛物线和直线上不同位置时,同理可得
(3)如答图2,延长AB交x轴于点F,过点F作FC⊥OA于点C,过点A作AR⊥x轴于点R ∵∠AOD=∠BAE,
相关推荐: