第一范文网 - 专业文章范例文档资料分享平台

小学数学典型应用题-问题与答案

来源:用户分享 时间:2025/6/1 1:50:31 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

解 设总工作量为1,则甲每小时完成1/6,乙每小时完成1/8,甲比乙每小时多完成(1/6-1/8),二人合做时每小时完成(1/6+1/8)。因为二人合做需要[1÷(1/6+1/8)]小时,这个时间内,甲比乙多做24个零件,所以

(1)每小时甲比乙多做多少零件?

24÷[1÷(1/6+1/8)]=7(个) (2)这批零件共有多少个?

7÷(1/6-1/8)=168(个) 答:这批零件共有168个。

解二 上面这道题还可以用另一种方法计算:

两人合做,完成任务时甲乙的工作量之比为 1/6∶1/8=4∶3 由此可知,甲比乙多完成总工作量的=1/7

所以,这批零件共有 24÷1/7=168(个)

例3 一个水池,底部装有一个常开的排水管,上部装有若干个同样粗细的进水管。当打开4个进水

管时,需要5小时才能注满水池;当打开2个进水管时,需要15小时才能注满水池;现在要用2小时将水池注满,至少要打开多少个进水管?

解 注(排)水问题是一类特殊的工程问题。往水池注水或从水池排水相当于一项工程,水的流量就是工作量,单位时间内水的流量就是工作效率。

要2小时内将水池注满,即要使2小时内的进水量与排水量之差刚好是一池水。为此需要知道进水管、排水管的工作效率及总工作量(一池水)。只要设某一个量为单位1,其余两个量便可由条件推出。 我们设每个同样的进水管每小时注水量为1,则4个进水管5小时注水量为(1×4×5),2个进水管15小时注水量为(1×2×15),从而可知 每小时的排水量为 (1×2×15-1×4×5)÷(15-5)=1 即一个排水管与每个进水管的工作效率相同。由此可知 一池水的总工作量为 1×4×5-1×5=15

又因为在2小时内,每个进水管的注水量为 1×2, 所以,2小时内注满一池水

至少需要多少个进水管? (15+1×2)÷(1×2) =8.5≈9(个)

答:至少需要9个进水管。

2 百分数问题

【含义】 百分数是表示一个数是另一个数的百分之几的数。百分数是一种特殊的分数。分数常常可以通分、约分,而百分数则无需;分数既可以表示“率”,也可以表示“量”,而百分数只能表示“率”;分数的分子、分母必须是自然数,而百分数的分子可以是小数;百分数有一个专门的记号“%”。 在实际中和常用到“百分点”这个概念,一个百分点就是1%,两个百分点就是2%。 【数量关系】 掌握“百分数”、“标准量”“比较量”三者之间的数量关系: 百分数=比较量÷标准量

标准量=比较量÷百分数

【解题思路和方法】 一般有三种基本类型: (1) 求一个数是另一个数的百分之几;

(2) 已知一个数,求它的百分之几是多少;

(3) 已知一个数的百分之几是多少,求这个数。

6

例1.红旗化工厂有男职工420人,女职工525人,男职工人数比女职工少百分之几?女职工比男职工

人数多百分之几?男、女职工各占全厂职工总数的百分之几? 例2 一桶水,用去70%后,又向桶里倒入10千克的水,这是桶内的水正好是原来整桶水的一半,原

来一桶水有多少千克? 例3.果品公司储存一批苹果,售出这批苹果的30%后,又运来160箱,这时比原来储存的苹果多1/10 ,

这时有苹果多少箱?

3 存款利率问题

【含义】 把钱存入银行是有一定利息的,利息的多少,与本金、利率、存期这三个因素有关。利率一般有年利率和月利率两种。年利率是指存期一年本金所生利息占本金的百分数;月利率是指存期一月所生利息占本金的百分数。

【数量关系】 年(月)利率=利息÷本金÷存款年(月)数×100% 利息=本金×存款年(月)数×年(月)利率

本利和=本金+利息=本金×[1+年(月)利率×存款年(月)数] 【解题思路和方法】 简单的题目可直接利用公式,复杂的题目变通后再利用公式。

例1 李大强存入银行1200元,月利率0.8%,到期后连本带利共取出1488元,求存款期多长。

解 因为存款期内的总利息是(1488-1200)元, 所以总利率为 (1488-1200)÷1200 又因为已知月利率, 所以存款月数为 (1488-1200)÷1200÷0.8%=30(月) 答:李大强的存款期是30月即两年半。

例 2 银行定期整存整取的年利率是:二年期7.92%,三年期8.28%,五年期9%。如果甲乙二人同时

各存入1万元,甲先存二年期,到期后连本带利改存三年期;乙直存五年期。五年后二人同时取

出,那么,谁的收益多?多多少元?

解 甲的总利息

10000×7.92%×2+[10000×(1+7.92%×2)]×8.28%×3 =1584+11584×8.28%×3=4461.47(元) 乙的总利息 10000×9%×5=4500(元) 4500-4461.47=38.53(元)

答:乙的收益较多,乙比甲多38.53元。

4 溶液浓度问题

【含义】 在生产和生活中,我们经常会遇到溶液浓度问题。这类问题研究的主要是溶剂(水或其它液体)、溶质、溶液、浓度这几个量的关系。例如,水是一种溶剂,被溶解的东西叫溶质,溶解后的混合物叫溶液。溶质的量在溶液的量中所占的百分数叫浓度,也叫百分比浓度。 【数量关系】 溶液=溶剂+溶质 浓度=溶质÷溶液×100%

【解题思路和方法】 简单的题目可直接利用公式,复杂的题目变通后再利用公式。 例1 爷爷有16%的糖水50克,(1)要把它稀释成10%的糖水,需加水多少克?(2)若要把它变成

30%的糖水,需加糖多少克?

解 (1)需要加水多少克? 50×16%÷10%-50=30(克) (2)需要加糖多少克? 50×(1-16%)÷(1-30%)-50 =10(克)

答:(1)需要加水30克,(2)需要加糖10克。 例2 要把30%的糖水与15%的糖水混合,配成25%的糖水600克,需要30%和15%的糖水各多少克?

7

解 假设全用30%的糖水溶液,那么含糖量就会多出 600×(30%-25%)=30(克)

这是因为30%的糖水多用了。于是,我们设想在保证总重量600克不变的情况下,用15%的溶液来“换掉”一部分30%的溶液。这样,每“换掉”100克,就会减少糖 100×(30%-15%)=15(克) 所以需要“换掉”30%的溶液(即“换上”15%的溶液) 100×(30÷15)=200(克) 由此可知,需要15%的溶液200克。

需要30%的溶液 600-200=400(克)

答:需要15%的糖水溶液200克,需要30%的糖水400克。

例3 甲容器有浓度为12%的盐水500克,乙容器有500克水。把甲中盐水的一半倒入乙中,混合后

再把乙中现有盐水的一半倒入甲中,混合后又把甲中的一部分盐水倒入乙中,使甲乙两容器中

的盐水同样多。求最后乙中盐水的百分比浓度。

解 由条件知,倒了三次后,甲乙两容器中溶液重量相等,各为500克,因此,只要算出乙容器中最后的含盐量,便会知所求的浓度。下面列表推算: 原 有 甲容器 盐水500 盐500×12%=60 盐60÷2=30 盐30+15=45 盐水500 盐45-9=36 乙容器 水500 盐水500+250=750 盐30 盐水750÷2=375 盐30÷2=15 盐水500 盐45-36+15=24 第一次把甲中一半盐水500÷2=250 倒入乙中后 倒入甲中后 第三次使甲乙中 盐水同样多 第而次把乙中一半盐水250+375=625 由以上推算可知,

乙容器中最后盐水的百分比浓度为 24÷500=4.8% 答:乙容器中最后的百分比浓度是4.8%。

5 商品利润问题

【含义】 这是一种在生产经营中经常遇到的问题,包括成本、利润、利润率和亏损、亏损率等方面的问题。

【数量关系】 利润=售价-进货价

利润率=(售价-进货价)÷进货价×100% 售价=进货价×(1+利润率) 亏损=进货价-售价 亏损率=(进货价-售价)÷进货价×100%

【解题思路和方法】 简单的题目可以直接利用公式,复杂的题目变通后利用公式。

例1 某服装店因搬迁,店内商品八折销售。苗苗买了一件衣服用去52元,已知衣服原来按期望盈利

30%定价,那么该店是亏本还是盈利?亏(盈)率是多少?

解 要知亏还是盈,得知实际售价52元比成本少多少或多多少元,进而需知成本。因为52元是原价的80%,所以原价为(52÷80%)元;又因为原价是按期望盈利30%定的,所以成本为 52÷80%÷(1+30%)=50(元)

可以看出该店是盈利的,盈利率为 (52-50)÷50=4% 答:该店是盈利的,盈利率是4%。

例2 成本0.25元的作业本1200册,按期望获得40%的利润定价出售,当销售出80%后,剩下的作

业本打折扣,结果获得的利润是预定的86%。问剩下的作业本出售时按定价打了多少折扣?

8

解 问题是要计算剩下的作业本每册实际售价是原定价的百分之几。从题意可知,每册的原定价是0.25×(1+40%),所以关键是求出剩下的每册的实际售价,为此要知道剩下的每册盈利多少元。剩下的作业本售出后的盈利额等于实际总盈利与先售出的80%的盈利额之差,即 0.25×1200×40%×86%-0.25×1200×40%×80%=7.20(元) 剩下的作业本每册盈利 7.20÷[1200×(1-80%)]=0.03(元) 又可知 (0.25+0.03)÷[0.25×(1+40%)]=80% 答:剩下的作业本是按原定价的八折出售的。

例3 某种商品,甲店的进货价比乙店的进货价便宜10%,甲店按30%的利润定价,乙店按20%的利润定价,结果乙店的定价比甲店的定价贵6元,求乙店的定价。

解 设乙店的进货价为1,则甲店的进货价为 1-10%=0.9 甲店定价为 0.9×(1+30%)=1.17

乙店定价为 1×(1+20%)=1.20

由此可得 乙店进货价为 6÷(1.20-1.17)=200(元) 乙店定价为 200×1.2=240(元) 答:乙店的定价是240元。

第三章 比例问题 1、归一问题

【含义】 在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。这类应用题叫做归一问题。

【数量关系】 总量÷份数=1份数量 1份数量×所占份数=所求几份的数量 另一总量÷(总量÷份数)=所求份数

【解题思路和方法】 先求出单一量,以单一量为标准,求出所要求的数量。

例1 一个粮食加工厂要磨面粉20000千克,3小时磨了6000千克.照这样计算,磨完剩下的面粉还要

几小时?

例2 某车间要加工一批零件,原计划由18人,每天工作8小时,7.5天完成任务.由于缩短工期,要求

4天完成任务,可是又要增加6人.求每天加班工作几小时? 例3 学校买来一些足球和篮球.已知买3个足球和5个篮球共花了281元;买3个足球和7个篮球共花

了355元.现在要买5个足球、4个篮球共花多少元?

2、归总问题

【含义】 解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

【数量关系】 1份数量×份数=总量 总量÷1份数量=份数

总量÷另一份数=另一每份数量

【解题思路和方法】 先求出总数量,再根据题意得出所求的数量

例1 小华每天读24页书,12天读完了《红岩》一书。小明每天读36页书,几天可以读完《红岩》? 例2 食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜。后来根据大家的意见,

每天比原计划多吃10千克,这批蔬菜可以吃多少天?

3 正反比例问题

9

【含义】 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值一定(即商一定),那么这两种量就叫做成正比例的量,它们的关系叫做正比例关系。正比例应用题是正比例意义和解比例等知识的综合运用。

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。反比例应用题是反比例的意义和解比例等知识的综合运用。

【数量关系】 判断正比例或反比例关系是解这类应用题的关键。许多典型应用题都可以转化为正反比例问题去解决,而且比较简捷。

【解题思路和方法】 解决这类问题的重要方法是:把分率(倍数)转化为比,应用比和比例的性质去解应用题。

正反比例问题与前面讲过的倍比问题基本类似。 例1 下列各题中的两种量是否成比例?成什么比例? ①速度一定,路程与时间. ②路程一定,速度与时间.

③路程一定,已走的路程与未走的路程.

④总时间一定,要制造的零件总数和制造每个零件所用的时间. ⑤总产量一定,亩产量和播种面积. ⑥整除情况下被除数一定,除数和商. ⑦同时同地,竿高和影长.

⑧半径一定,圆心角的度数和扇形面积. ⑨两个齿轮啮合转动时转速和齿数. ⑩圆的半径和面积.

(11)长方体体积一定,底面积和高. (12)正方形的边长和它的面积. (13)乘公共汽车的站数和票价.

(14)房间面积一定,每块地板砖的面积与用砖的块数.

(15)汽车行驶时每公里的耗油量一定,所行驶的距离和耗油总量.

分析 以上每题都是两种相关联的量,一种量变化,另一种量也随着变化,那么怎样来确定这两种量成哪种比例或不成比例呢?关键是能否把两个两种形式,或只能写出加减法关系,那么这两种量就不成比例.例如①×零件数=总时间,总时间一定,制造每个零件用的时间与要制造的零件总数成反比例.③路程一定,已走的路程和未走的路程是加减法关系,不成比例. 解:成正比例的有:①、⑦、⑧、(15)

成反比例的有:②、④、⑤、⑥、⑨、(11)、(14)

不成比例的有:③、⑩、(12)、(13).

例2 一条路全长60千米,分成上坡、平路、下坡三段,各段路程长的比依次是1:2:3,某人走各段

路程所用时间之比依次是4∶5∶6,已知他上坡的速度是每小时3千米,问此人走完全程用了多少时间?

分析 要求此人走完全程用了多少时间,必须根据已知条件先求出此人走上坡路用了多少时间,

必须知道走上坡路的速度(题中每小时行3千米)和上坡路的路程,已知全程60千米,

又知道上坡、平路、下坡三段路程比是1∶2∶3,就可以求出上坡路的路程.

例3 修一条公路,已修的是未修的1/3,再修300米后,已修的变成未修的1/2,求这条公路总长是

10

搜索更多关于: 小学数学典型应用题-问题与答案 的文档
小学数学典型应用题-问题与答案.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c2ij462n7m86r0ta505pa_2.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top