8个苹果.问:妈妈买回苹果多少个?计划吃多少天?
分析1 根据已知条件分析出,每天吃苹果的个数及吃若干天后剩下苹果的个数是变量,而苹果的总个数是不变量.因此列出方程的等量关系是苹果总个数=苹果总个数.方程左边,第一种方案下每天吃的个数×天数+剩下的个数,等于右边,第二种方案下每天吃的个数×天数-所差的个数。 解:设原计划吃x天。 4x+48=6x-8 2x=56 x=28。
苹果个数:4×28+48=160(个), 或:6×28-8=160(个)。
答:妈妈买回苹果160个,原计划吃28天。
例6.星期天小明买来一些苹果招待同学,吃了全部的9分之5少3个,这时妈妈回家了,又带回来了
31个,结果现在的苹果数比吃以前的个数还多20%,原来小明买来多少个苹果?
假设原来小明买来X个苹果
吃了又带回来了31个(现在的苹果数)——以前的个数=以前的个数的20% (1-5/9)×X+3+31-X=20%X X=45
第十章 “牛吃草”问题
“牛吃草”问题
【含义】 “牛吃草”问题是大科学家牛顿提出的问题,也叫“牛顿问题”。这类问题的特点在于要考虑草边吃边长这个因素。
【数量关系】 1) 设定一头牛一天吃草量为“1”
2)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数); 3)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;` 4)吃的天数=原有草量÷(牛头数-草的生长速度); 5)牛头数=原有草量÷吃的天数+草的生长速度 草总量=原有草量+草每天生长量×天数
【解题思路和方法】 解这类题的关键是求出草每天的生长量。
21
例1 一块草地,10头牛20天可以把草吃完,15头牛10天可以把草吃完。问多少头牛5天可以把
草吃完? 解 草是均匀生长的,所以,草总量=原有草量+草每天生长量×天数。求“多少头牛5天可以把草吃完”,就是说5 天内的草总量要5 天吃完的话,得有多少头牛? 设每头牛每天吃草量为1,按以下步骤解答:
(1)求草每天的生长量
因为,一方面20天内的草总量就是10头牛20天所吃的草,即(1×10×20);另一方面,20天内的草总量又等于原有草量加上20天内的生长量,所以 1×10×20=原有草量+20天内生长量 同理 1×15×10=原有草量+10天内生长量 由此可知 (20-10)天内草的生长量为 1×10×20-1×15×10=50
因此,草每天的生长量为 50÷(20-10)=5 (2)求原有草量
原有草量=10天内总草量-10内生长量=1×15×10-5×10=100 (3)求5 天内草总量
5 天内草总量=原有草量+5天内生长量=100+5×5=125 (4)求多少头牛5 天吃完草
因为每头牛每天吃草量为1,所以每头牛5天吃草量为5。 因此5天吃完草需要牛的头数 125÷5=25(头) 答:需要5头牛5天可以把草吃完。
例 2 一只船有一个漏洞,水以均匀速度进入船内,发现漏洞时已经进了一些水。如果有12个人淘水,3小时可以淘完;如果只有5人淘水,要10小时才能淘完。求17人几小时可以淘完? 解 这是一道变相的“牛吃草”问题。与上题不同的是,最后一问给出了人数(相当于“牛数”),求时间。设每人每小时淘水量为1,按以下步骤计算:
(1)求每小时进水量
因为,3小时内的总水量=1×12×3=原有水量+3小时进水量
22
10小时内的总水量=1×5×10=原有水量+10小时进水量 所以,(10-3)小时内的进水量为 1×5×10-1×12×3=14 因此,每小时的进水量为 14÷(10-3)=2 (2)求淘水前原有水量
原有水量=1×12×3-3小时进水量=36-2×3=30
(3)求17人几小时淘完
17人每小时淘水量为17,因为每小时漏进水为2,所以实际上船中每小时减少的水量为(17-2),所以17人淘完水的时间是
30÷(17-2)=2(小时)
答:17人2小时可以淘完水。
例3 一块草地,每天生长的速度相同.现在这片牧草可供16头牛吃20天,或者供80只羊吃12天.如果一头牛一天的吃草量等于4只羊一天的吃草量,那么10头牛与60只羊一起吃可以吃多少天? 分析 由于1头牛每天的吃草量等于4只羊每天的吃草量,故60只羊每天的吃草量和15头牛每天吃草量相等,80只羊每天吃草量与20头牛每天吃草量相等。 解:60只羊每天吃草量相当多少头牛每天的吃草量? 60÷4=15(头)。 草地原有草量与20天新生长草量可供多少头牛吃一天? 16×20=320(头)。 80只羊12天的吃草量供多少头牛吃一天? (80÷4)×12=240(头)。
每天新生长的草够多少头牛吃一天? (320-240)÷(20-12)=10(头)。 原有草量够多少头牛吃一天? 320-(20×10)=120(头)。
原有草量可供10头牛与60只羊吃几天? 120÷(60÷4+10-10)=8(天)。
答:这块草场可供10头牛和60只羊吃8天。
第十一章 数学游戏
1 构图布数问题
【含义】 这是一种数学游戏,也是现实生活中常用的数学问题。所谓“构图”,就是设计出一种图形;所谓“布数”,就是把一定的数字填入图中。“构图布数”问题的关键是要符合所给的条件。 【数量关系】 根据不同题目的要求而定。
【解题思路和方法】 通常多从三角形、正方形、圆形和五角星等图形方面考虑。按照题意来构图布数,符合题目所给的条件。
例1 十棵树苗子,要栽五行子,每行四棵子,请你想法子。 解 符合题目要求的图形应是一个五角星。 4×5÷2=10
因为五角星的5条边交叉重复,应减去一半。
例2 九棵树苗子,要栽三行子,每行四棵子,请你想法子。
解 符合题目要求的图形是一个三角形,每边栽4棵树,三个顶点上重复应减去,正好9棵。 4×3-3=9
23
例3 把12拆成1到7这七个数中三个不同数的和,有几种写法?请设计一种图形,填入这七个数,
每个数只填一处,且每条线上三个数的和都等于12。 解 共有五种写法,即 12=1+4+7 12=1+5+6 12=2+3+7 12=2+4+6 12=3+4+5
在这五个算式中,4出现三次,其余的1、2、3、5、6、7各出现两次,因此,4应位于三条线的交点处,其余数都位于两条线的交点处。据此,我们可以设计出以下三种图形: 例4 九棵树苗子,要栽十行子,每行三棵子,请你想法子。 解 符合题目要求的图形是两个倒立交叉的等腰三角形, 一个三角形的顶点在另一个三角形底边的中线上。
2 幻方问题
【含义】 把n×n个自然数排在正方形的格子中,使各行、各列以及对角线上的各数之和都相等,这样的图叫做幻方。最简单的幻方是三级幻方。
【数量关系】 每行、每列、每条对角线上各数的和都相等,这个“和”叫做“幻和”。 三级幻方的幻和=45÷3=15
五级幻方的幻和=325÷5=65
【解题思路和方法】首先要确定每行、每列以及每条对角线上各数的和(即幻和),其次是确定正中间方格的数,然后再确定其它方格中的数。
例1 把1,2,3,4,5,6,7,8,9这九个数填入九个方格中,使每行、每列、每条对角线上三个
数的和相等。
解 幻和的3倍正好等于这九个数的和,所以幻和为 (1+2+3+4+5+6+7+8+9)÷3=45÷3=15
九个数在这八条线上反复出现构成幻和时,每个数用到的次数不全相同,最中心的那个数要用到四次(即出现在中行、中列、和两条对角线这四条线上),四角的四个数各用到三次,其余的四个数各用到两次。看来,用到四次的“中心数”地位重要,宜优先考虑。
设“中心数”为Χ,因为Χ出现在四条线上,而每条线上三个数之和等于15,所以 (1+2+3+4+5+6+7+8+9)+(4-1)Χ=15×4 即 45+3Χ=60 所以 Χ=5
接着用奇偶分析法寻找其余四个偶数的位置,它们 分别在四个角,再确定其余四个奇数的位置,它们分别 在中行、中列,进一步尝试,容易得到正确的结果。
例2 把2,3,4,5,6,7,8,9,10这九个数填到九个方格中, 使每行、每列、以及对角线上的各数之和都相等。
解 只有三行,三行用完了所给的9个数,所以每行三数之和为
(2+3+4+5+6+7+8+9+10)÷3=18
假设符合要求的数都已经填好,那么三行、三列、两条对角线共8行上的三个数之和都等于18,我们看18能写成哪三个数之和:
最大数是10:18=10+6+2=10+5+3
最大数是9: 18=9+7+2=9+6+3=9+5+4 最大数是8: 18=8+7+3=8+6+4
最大数是7: 18=7+6+5 刚好写成8个算式。
首先确定正中间方格的数。第二横行、第二竖行、两个斜行都用到正中间方格的数,共用了四次。
24
2 9 4 7 5 3 6 1 8 观察上述8个算式,只有6被用了4次,所以正中间方格中应填6。
然后确定四个角的数。四个角的数都用了三次,而上述8个算式中只有9、7、5、3被9 2 7 4 5
3 抽屉原则问题
【含义】 把3只苹果放进两个抽屉中,会出现哪些结果呢?要么把2只苹果放进一个抽屉,剩下的一个放进另一个抽屉;要么把3只苹果都放进同一个抽屉中。这两种情况可用一句话表示:一定有一
个抽屉中放了2只或2只以上的苹果。这就是数学中的抽屉原则问题。
【数量关系】 基本的抽屉原则是:如果把n+1个物体(也叫元素)放到n个抽屉中,那么至少有一个抽屉中放着2个或更多的物体(元素)。
抽屉原则可以推广为:如果有m个抽屉,有k×m+r(0<r≤m)个元素那么至少有一个抽屉中要放(k+1)个或更多的元素。
通俗地说,如果元素的个数是抽屉个数的k倍多一些,那么至少有一个抽屉要放(k+1)个或更多的元素。
【解题思路和方法】 (1)改造抽屉,指出元素; (2)把元素放入(或取出)抽屉; (3)说明理由,得出结论。
例1 育才小学有367个2000年出生的学生,那么其中至少有几个学生的生日是同一天的?
解 由于2000年是润年,全年共有366天,可以看作366个“抽屉”,把367个1999年出生的学生看作367个“元素”。367个“元素”放进366个“抽屉”中,至少有一个“抽屉”中放有2个或更多的“元素”。
这说明至少有2个学生的生日是同一天的。
例2 有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中
至少有两个小朋友摸出的棋子的颜色的配组是一样的。
分析与解答 首先要确定3枚棋子的颜色可以有多少种不同的情况,可以有:3黑,2黑1白,1黑2白,3白共4种配组情况,看作4个抽屉.把每人的3枚棋作为一组当作一个苹果,因此共有5个苹果.把每人所拿3枚棋子按其颜色配组情况放入相应的抽屉.由于有5个苹果,比抽屉个数多,所以根据抽屉原理,至少有两个苹果在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的。
例3 一个袋子里有一些球,这些球仅只有颜色不同。其中红球10个,白球9个,黄球8个,蓝球2
个。某人闭着眼睛从中取出若干个,试问他至少要取多少个球,才能保证至少有4个球颜色相同?
解 把四种颜色的球的总数(3+3+3+2)=11 看作11个“抽屉”,那么,至少要取(11+1)个球才能保证至少有4个球的颜色相同。
答;他至少要取12个球才能保证至少有4个球的颜色相同。
6 10 8 3 用了三次,所以9、7、5、3应填在四个角上。但还应兼顾两条对角线上三个数的和都为18。
最后确定其它方格中的数。如图。
25
相关推荐: