12/31/3x1 1/3x3 1/3x5 1/6x7 1/61010101编码1/311100100x1 1/3x3 1/3x5 1/6x7 1/610210编码102120X的D=2霍夫曼编码13/52/52/5y0 1/5y2 1/5y4 1/5y6 1/5y8 1/5Y的D=2霍夫曼编码10101010X的D=3霍夫曼编码1
编码100100111110y0 1/5y2 1/5y4 1/5y6 1/5y8 1/53/52编码1010222120210Y的D=3霍夫曼编码
根据级联的定义易知,级联后的新变长码的霍夫曼编码为: 序号k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
X·Y x1·y0 x1·y2 x1·y4 x1·y6 x1·y8 x3·y0 x3·y2 x3·y4 x3·y6 x3·y8 x5·y0 x5·y2 x5·y4 x5·y6 x5·y8 D=2霍夫曼编码 1110 1101 1100 11111 11110 1010 1001 1000 10111 10110 0110 0101 0100 01111 01110 D=2编码码长 4 4 4 5 5 4 4 4 5 5 4 4 4 5 5 D=3霍夫曼编码 11 10 122 121 120 01 00 022 021 020 211 210 2122 2121 2120 D=3编码码长 2 2 3 3 3 2 2 3 3 3 3 3 4 4 4 概率 1/15 1/15 1/15 1/15 1/15 1/15 1/15 1/15 1/15 1/15 1/30 1/30 1/30 1/30 1/30
16 17 18 19 20 x7·y0 x7·y2 x7·y4 x7·y6 x7·y8 200010 0001 0000 00111 00110 4 4 4 5 5 201 200 2022 2021 2020 3 3 4 4 4 1/30 1/30 1/30 1/30 1/30 H(X·Y)= –
q(xk?y)logq(xk?y)=4.24(比特/符号) ?kkk?1D=2时,平均码长n1=4?3222+5?==4.4(码元/符号) 555=
编码效率
?1=
H(X?Y)n1logD4.24=0.96364
4.4?log2编码效率比②所得的编码效率0.98422低; D=3时,平均码长n2=2?48344+3?+4?==2.93(码元/符号) 15151515=
编码效率
?2=
H(X?Y)n2logD4.24=0.91302
2.93?log3编码效率比②所得的编码效率0.98425低。 (4) 当D=2时,n1=4.4,
H(X?Y)4.24==4.24
logDlog2故满足
H(X?Y)H(X?Y)+1,即满足香农第一定理; ?n1<
logDlogDH(X?Y)4.24==2.68
logDlog3当D=3时,n2=2.93,
故满足
H(X?Y)H(X?Y)+1,即满足香农第一定理; ?n2<
logDlogD
相关推荐: