压与饱和点电压的差值的:VP=(180V-90V)=90V,这是双臂输出总峰值,单臂是其1/2,即45V,此值可驱动EL34、KT88甚至2A3。
倒相级6SN7的阴极恒流源工作点的设置同样重要。采用EF89做恒流管是因为1993年从从炼钢厂废钢里的英国和丹麦军用旧通信设备上拆下了十多只EF89,多数测试良好;查手册可得到:EF89的内阻高达900K,放大系数u=3280,Va>75V以后屏流曲线比较平坦(屏压Va变动时屏流Ia变化很小),屏流加帘栅极电流超过10mA。这些特性决定了EF89在低屏压110V时有良好的恒流特性。
EF89的工作点由6SN7阴极电位(也就是EF89的阳极电压)、EF89的帘栅极电压、阳极电流加帘栅极电流流过阴极电阻产生负偏压决定。6SN7阴极电位就是前级SRPP输出电位加偏压,这个电路里是112V~115V。EF89的帘栅极电压从手册查出是100V,最好稳定,所以采用了帘栅极100V稳压电路。选择工作点主要是调整EF89的阴极电阻,(本机调至约200欧),对应的第一栅极偏压约-2.2~-2.3V左右,使6SN7两臂33K输出电阻上的压降为140V左右,对应的阳极电流为4.3mA左右。
根据EF89的内阻Ra、放大系数u和阴极电阻Rk,计算恒流源所呈现的交流电阻: R=Ra+(u+1)×Rk=900K+(3280+1)×0.2K=1556.2K=1.56M 这数值比常规长尾倒相电路的阴极电阻(20~30K)大了50多倍。
再查EF89曲线检验工作点是否合适,见下图:EF89的栅压-帘栅压-屏流曲线——栅压-2.3V、帘栅压100V,对应的屏流是8.5mA。
13
EF89帘栅极电流曲线:帘栅压100V,栅压-2.3V,对应的帘栅极电流3mA
14
由下图可见EF89工作于特性曲线的平坦区域。
实际测试表明,管内两边三极管参数完全一致的管子的两臂直流电压没有差异,不完全一致的,两臂直流电压可能有0.5V~2.0V的差异,但是两臂输出的交流电压的平衡度很好,即使屏流很不一致,只要跨导相差不大,输出电压也只有约0.2Vrms~0.3 Vrms的差异。
15
当阴随推动管采用12AT7时,尽管其自身栅压为-1.6~-2V不等,但由于12AT7本身栅压-屏流(Vg1-Ia)特性和阴极深度负反馈作用,对栅压跟随得很好,加到栅极电压是-32V左右,阴极也是-32V左右,相差不过零点几伏,所以麦景图MC-275图中标注12AZ7栅极电压是-57V,阴极也是-57V。开始我以为MC-275图标错了,实际做出来测量后才明白12AT7就是跟随得这么好。
起初打算将功放级的偏压改为阴极电阻偏压,在底板上增加了2×450欧姆的阴极电阻(美国西电后期黑色的矩形电阻)。这样的最大好处是:如果失去负偏压(阴极电阻开路),阳极电流也同时断开;如果负偏压改变(阴极电阻变值),阳极电流也同时改变,保证了功放管的安全。但是,由于十几年前从废钢场捡来的英国大盾EL34参数稍微有点不对称,推挽输出的两臂电流不完全一致,这不仅使谐波失真不能完全被抵消,而且还会产生交越失真。所以,为了能用上这些大盾名管,还是采用原先固定负偏压,以便于单独调整偏压,使两管电流对称。实践表明,原先采用的WXD2-53线绕10圈指针式电位器可靠性很高,负压回路都采用高可靠金属膜电阻,可靠性基本是有保证的。调试结果是:各管偏压相差并不大,约0.4V~0.6V,对管子的工作点影响不大。
(3)功率输出级的工作点选择
必须仔细设置EL34和TK88的工作点,使之满足中小音量时工作在A类,大音量时工作在AB1类的要求。对于EL34比较好办,因为手册给出了栅压—屏流曲线(Vg1-Ia),只要把工作点设置在Vg1-Ia曲线直线段的中点(全A类工作点)偏下一点即可。对于KT88,没有栅压—屏流曲线(Vg1-Ia),只能根据手册给出工作点条件,到Va-Ia曲线中去找。最终确定EL34的工作点是:Va=400V,Vg=-31~-32V,Ia=56mA。 KT88的工作点是:Va=400V,Vg=-40V,Ia=76mA。 EL34工作点曲线
最终调好EL34三极管接法的工作点是:Va=400V,Vg=-31~-32V,阴极0.22
16
相关推荐: