第一范文网 - 专业文章范例文档资料分享平台

高等数学教材(较完整)

来源:用户分享 时间:2025/8/22 21:50:07 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

.. . .. . .

(2):令

=0,解出此方程在区间(a,b)实根;

(3):对于(2)中解出的每一个实根x0,检查是拐点,若相同,则不是拐点。

在x0左、右两侧邻近的符号,若符号相反,则此点

例题:求曲线的拐点。

解答:由 令 判断四、不定积分

=0,得x=0,2/3

在0,2/3左、右两侧邻近的符号,可知此两点皆是曲线的拐点。

不定积分的概念

原函数的概念

已知函数f(x)是一个定义在某区间的函数,如果存在函数F(x),使得在该区间的任一点都有 dF'(x)=f(x)dx, 则在该区间就称函数F(x)为函数f(x)的原函数。 例:sinx是cosx的原函数。 关于原函数的问题

函数f(x)满足什么条件是,才保证其原函数一定存在呢?这个问题我们以后来解决。若其存在原函数,那末原函数一共有多少个呢?

我们可以明显的看出来:若函数F(x)为函数f(x)的原函数,

即:F\, 则函数族F(x)+C(C为任一个常数)中的任一个函数一定是f(x)的原函数, 故:若函数f(x)有原函数,那末其原函数为无穷多个. 不定积分的概念

S. . . . . ..

.. . .. . .

函数f(x)的全体原函数叫做函数f(x)的不定积分,

记作

就是函数族

由上面的定义我们可以知道:如果函数F(x)为函数f(x)的一个原函数,那末f(x)的不定积分 F(x)+C. 即: 例题:求:

.

=F(x)+C

解答:由于不定积分的性质

,故=

1、函数的和的不定积分等于各个函数的不定积分的和; 即:

2、求不定积分时,被积函数中不为零的常数因子可以提到积分号外面来, 即:

求不定积分的方法

换元法

换元法(一):设f(u)具有原函数F(u),u=g(x)可导,那末F[g(x)]是f[g(x)]g'(x)的原函数. 即有换元公式: 例题:求

解答:这个积分在基本积分表中是查不到的,故我们要利用换元法。 设u=2x,那末cos2x=cosu,du=2dx,因此:

换元法(二):设x=g(t)是单调的,可导的函数,并且g'(t)≠0,又设f[g(t)]g'(t)具有原函数φ(t), 则φ[g(x)]是f(x)的原函数.(其中g(x)是x=g(t)的反函数)

S. . . . . ..

.. . .. . .

即有换元公式:

例题:求

解答:这个积分的困难在于有根式,但是我们可以利用三角公式来换元. 设x=asint(-π/2

,dx=acostdt,于是有:

关于换元法的问题

不定积分的换元法是在复合函数求导法则的基础上得来的,我们应根据具体实例来选择所用的方法,求不定积分不象求导那样有规则可依,因此要想熟练的求出某函数的不定积分,只有作大量的练习。 分部积分法

这种方法是利用两个函数乘积的求导法则得来的。

设函数u=u(x)及v=v(x)具有连续导数.我们知道,两个函数乘积的求导公式为: (uv)'=u'v+uv',移项,得

uv'=(uv)'-u'v,对其两边求不定积分得: 这就是分部积分公式 例题:求

解答:这个积分用换元法不易得出结果,我们来利用分部积分法。

设u=x,dv=cosxdx,那末du=dx,v=sinx,代入分部积分公式得: 关于分部积分法的问题

在使用分部积分法时,应恰当的选取u和dv,否则就会南辕北辙。选取u和dv一般要考虑两点: (1)v要容易求得; (2)

容易积出。

几种特殊类型函数的积分举例

有理函数的积分举例

有理函数是指两个多项式的商所表示的函数,当分子的最高项的次数大于分母最高项的次数时称之为假分式, 反之为真分式。

S. . . . . ..

.. . .. . .

在求有理函数的不定积分时,若有理函数为假分式应先利用多项式的除法,把一个假分式化成一个多项式和一个真分式之和的形式,然后再求之。

例题:求 解答:

关于有理函数积分的问题

有理函数积分的具体方法请大家参照有关书籍,请谅。 三角函数的有理式的积分举例

三角函数的有理式是指由三角函数和常数经过有限次四则运算所构成的函数。

例题:求 解答:

关于三角函数的有理式的积分的问题

任何三角函数都可用正弦与余弦函数表出,故变量代换u=tan(x/2)对三角函数的有理式的积分应用,在此我 们不再举例。 简单无理函数的积分举例

例题:求 解答:设

,于是x=u2+1,dx=2udu,从而所求积分为:

五、定积分及其应用

定积分的概念

我们先来看一个实际问题———求曲边梯形的面积。

S. . . . . ..

.. . .. . .

设曲边梯形是有连续曲线y=f(x)、x轴与直线x=a、x=b所围成。如下图所示:

现在计算它的面积A.我们知道矩形面积的求法,但是此图形有一边是一条曲线,该如何求呢?

我们知道曲边梯形在底边上各点处的高f(x)在区间[a,b]上变动,而且它的高是连续变化的,因此在很小的一段区间的变化很小,近似于不变,并且当区间的长度无限缩小时,高的变化也无限减小。因此,如果把区间[a,b]分成许多小区间,在每个小区间上,用其中某一点的高来近似代替同一个小区间上的窄曲变梯形的变高,我们再根据矩形的面积公式,即可求出相应窄曲边梯形面积的近似值,从而求出整个曲边梯形的近似值。

显然:把区间[a,b]分的越细,所求出的面积值越接近于精确值。为此我们产生了定积分的概念。 定积分的概念

设函数f(x)在[a,b]上有界,在[a,b]中任意插入若干个分点 a=x0

[x0,x1],...[xn-1,xn],

在每个小区间[xi-1,xi]上任取一点ξi(xi-1≤ξi≤xi),作函数值f(ξi)与小区间长度的乘积f(ξi)△xi, 并作出和定的极限I,

这时我们称这个极限I为函数f(x)在区间[a,b]上的定积分, 记作

如果不论对[a,b]怎样分法,也不论在小区间上的点ξi怎样取法,只要当区间的长度趋于零时,和S总趋于确

即:关于定积分的问题

我们有了定积分的概念了,那么函数f(x)满足什么条件时才可积? 定理(1):设f(x)在区间[a,b]上连续,则f(x)在区间[a,b]上可积。

(2):设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间[a,b]上可积。 定积分的性质

性质(1):函数的和(差)得定积分等于它们的定积分的和(差). 即:

性质(2):被积函数的常数因子可以提到积分号外面. 即:

S. . . . . ..

搜索更多关于: 高等数学教材(较完整) 的文档
高等数学教材(较完整).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c2jflp8ai4t1oirv327pb3jk4h7sglc00psr_8.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top