//
15.如图,正△ABC的边长为4,点P为BC边上的任意一点(不与点B、C重合),且∠APD=60°,PD交AB于点D.设BP=x,BD=y,则y关于x的函数图象大致是( )
A. B. C.
D.
【考点】E7:动点问题的函数图象.
【分析】由△ABC是正三角形,∠APD=60°,可证得△BPD∽△CAP,然后由相似三角形的对应边成比例,即可求得答案.
【解答】解:∵△ABC是正三角形, ∴∠B=∠C=60°,
∵∠BPD+∠APD=∠C+∠CAP,∠APD=60°, ∴∠BPD=∠CAP, ∴△BPD∽△CAP, ∴BP:AC=BD:PC,
∵正△ABC的边长为4,BP=x,BD=y, ∴x:4=y:(4﹣x), ∴y=﹣x+x. 故选C.
【点评】此题考查了动点问题、二次函数的图象以及相似三角形的判定与性质.注意证得△BPD∽△CAP是关键.
16.在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1…、正方形AnBnCnCn﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点Bn的坐标是( )
2
//
//
A.(2
n﹣1
,2﹣1)
n
B.(2,2﹣1) C.(2
nnn﹣1
,2+1) D.(2
nn﹣1
,2)
n
【考点】F8:一次函数图象上点的坐标特征;D2:规律型:点的坐标.
【分析】根据一次函数图象上点的坐标特征找出A1、A2、A3、A4的坐标,结合图形即可得知点Bn是线段CnAn+1的中点,由此即可得出点Bn的坐标.
【解答】解:观察,发现:A1(1,0),A2(2,1),A3(4,3),A4(8,7),…, ∴An(2n﹣1,2n﹣1﹣1).
观察图形可知:点Bn是线段CnAn+1的中点, ∴点Bn的坐标是(2n﹣1,2n﹣1). 故选A.
【点评】本题考查了一次函数图象上点的坐标特征以及规律型中点的坐标的变化,根据点的坐标的变化找出变化规律“An(2
二、填空题(本小题共3小题,每小题3分,共9分)
17.人类的遗传物质就是DNA,人类的DNA是很长的链,最短的22号染色体也长达30000000个核苷酸,30 000 000用科学记数法表示为 3×107 . 【考点】1I:科学记数法—表示较大的数.
【分析】科学记数法的表示形式为a×10的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数. 【解答】解:30 000 000=3×10.
【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
18.如图,在正方形纸片ABCD中,EF∥AD,M,N是线段EF的六等分点,若把该正方形纸片卷成一个圆柱,使点A与点D重合,此时,底面圆的直径为10cm,则圆柱上M,N两点间的距离是 5
cm.
n
7
n
n﹣1
,2
n﹣1
﹣1)”是解题的关键.
//
//
【考点】M4:圆心角、弧、弦的关系.
【分析】根据题意得到MN=BC,当正方形纸片卷成一个圆柱时,EF卷成一个圆,线段卷成圆上一段弧,该段弧所对的圆心角为×360°,要求圆柱上M,N两点间的距离即求弦MN的长. 【解答】解:根据题意得:EF=AD=BC,MN=2EM=EF,
把该正方形纸片卷成一个圆柱,使点A与点D重合,则线段EF形成一直径为10cm的圆,线段EF为圆上的一段弧.
所对的圆心角为:×360°=120°,
所以圆柱上M,N两点间的距离为:2×5×sin60°=5故答案为:5
.
cm.
【点评】此题实质考查了圆上弦的计算,需要先找出圆心角再根据弦长公式计算,熟练掌握公式及性质是解本题的关键.
19.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是 1.2 .
【考点】PB:翻折变换(折叠问题).
【分析】如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小,利用△AFM∽△ABC,得到求出FM即可解决问题.
【解答】解:如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.(点P在以F为圆心CF为半径的圆上,当FP⊥AB时,点P到AB的距离最小)
=
//
//
∵∠A=∠A,∠AMF=∠C=90°, ∴△AFM∽△ABC, ∴
=
,
∵CF=2,AC=6,BC=8, ∴AF=4,AB=∴
=
,
=10,
∴FM=3.2, ∵PF=CF=2, ∴PM=1.2
∴点P到边AB距离的最小值是1.2. 故答案为1.2.
【点评】本题考查翻折变换、最短问题、相似三角形的判定和性质、勾股定理.垂线段最短等知识,解题的关键是正确找到点P位置,属于中考常考题型.
三、解答题(本题共69分) 20.计算:(﹣1)0+2﹣1﹣
+|1﹣
|
【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.
【分析】首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可. 【解答】解:(﹣1)0+2﹣1﹣=1+﹣3=﹣2
+
﹣1
+|1﹣
|
【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.
21.如图,在4×5网格图中,其中每个小正方形边长均为1,梯形ABCD和五边形EFGHK的顶点均为小正方形的顶点.
(1)以B为位似中心,在网格图中作四边形A′BC′D′,使四边形A′BC′D′和梯形ABCD位似,且位似比为2:1;
(2)求(1)中四边形A′BC′D′与五边形EFGHK重叠部分的周长.(结果保留根号)
//
相关推荐: