第一范文网 - 专业文章范例文档资料分享平台

新高考二轮复习理科数学专题强化训练(十三) 立体几何

来源:用户分享 时间:2025/5/30 12:45:12 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

专题强化训练(十三) 立体几何

一、选择题

1.[2019·南昌重点中学]一个几何体挖去部分后的三视图如图所示,若其正视图和侧视图都是由三个边长为2的正三角形组成的,则该几何体的表面积为( )

A.13π C.11π

B.12π D.23π

解析:依题意,题中的几何体是从一个圆台(该圆台的上底面半径为1,下底面半径为2,母线长为2)中挖去一个圆锥(该圆锥的底面半径为1,母线长为2)后得到的,圆台的侧面积为π(1+2)×2=6π,圆锥的侧面积为π×1×2=2π,所以题中几何体的表面积为6π+2π+π×22=12π,选B.

答案:B

2.[2019·开封定位考试]某几何体的三视图如图所示,则该几何体的体积为( )

1A.3 2C.3 1B.2 D.1

解析:由三视图知,该几何体是一个三棱锥,其高为1,底面是112

一个等腰直角三角形,所以该几何体的体积V=3×2×2×2×1=3,

故选C.

答案:C

3.[2019·安徽示范高中]已知三棱锥P-ABC中,AB⊥平面APC,AB=42,PA=PC=2,AC=2,则三棱锥P-ABC外接球的表面积为( )

A.28π C.48π

B.36π D.72π

解析:解法一:因为PA=PC=2,AC=2,所以PA⊥PC.因为AB⊥平面APC,所以AB⊥AC,AB⊥PC,又PA∩AB=A,所以PC⊥平面PAB,所以PC⊥PB,则△BCP,△ABC均为直角三角形.如图,取BC的中点为O,连接OA,OP,则OB=OC=OA=OP,即点O为三棱锥P-ABC外接球的球心.在Rt△ABC中,AC=2,AB=42,则BC=6,所以外接球的半径R=3,所以三棱锥P-ABC外接球的表面积S=4πR2=36π,故选B.

解法二:因为PA=PC=2,AC=2,所以PA⊥PC,△ACP为直角三角形.如图,取AC的中点为M,则M为△PAC外接圆的圆心.过M作直线n垂直于平面PAC,则直线n上任意一点到点P,A,C的距离都相等.因为AB⊥平面PAC,所以AB平行于直线n.设直线n与BC的交点为O,则O为线段BC的中点,所以点O到点B,C的距离相等,则点O即三棱锥P-ABC外接球的球心.因为AB⊥平面PAC,所以AB⊥AC,又AC=2,AB=42,所以BC=6,则外接球的半径R=3,所以三棱锥P-ABC外接球的表面积S=4πR2=36π,故选B.

解法三:因为PA=PC=2,AC=2,所以PA⊥PC,又AB⊥平面PAC,所以可把三棱锥P-ABC放在如图所示的长方体中,此长方体的长、宽、高分别为2,2,42,则三棱锥P-ABC的外接球即长方体的外接球,长方体的体对角线即长方体外接球的直径,易得长方体的体对角线的长为6,则外接球的半径R=3,所以三棱锥P-ABC外接球的表面积S=4πR2=36π,故选B.

答案:B

4.[2019·唐山摸底]已知某几何体的三视图如图所示(俯视图中曲线为四分之一圆弧),则该几何体的表面积为( )

π

A.1-4 π

C.2+4

π

B.3+2 D.4

解析:由题设知,该几何体是棱长为1的正方体被截去底面半径

新高考二轮复习理科数学专题强化训练(十三) 立体几何.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c2kh5l6igkx02ra61x73m28mwx147wg01cv7_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top