=lim= -1
¡àf(0)= -1 Àý2 µ±x½â£º¡ß
?21?1?2xx?0
?0ʱ£¬f(x)?sin2x£¬ÓÖf(x)ÔÚx=0´¦Á¬Ðø£¬Çóf(0)¡£
xlimf(x)?limx?0x?0sin2xxsin2x?lim.2?2x?02x¡àf(0)=2
Àý3 µ±x???ʱ£¬ÏÂÁбäÁ¿ÖУ¬£¨ £©ÎªÎÞÇîСÁ¿¡£
xsinxx2£¨£Ã£© £¨£Ä£©exx?1£¨£Á£©lnx £¨£Â£©½â£º¡ß
?1
A.limlnx??,B.limx???2x???sinx?0xC.limx???x??D.lim(ex?1)??x???x?1
´ð°¸£º£¨£Â£© Àý£´ µ±£¨A£©e£¨C£©½â£º¡ß
x?0ʱ£¬ÏÂÁбäÁ¿ÖУ¨ £©ÎªÎÞÇîСÁ¿¡£
x?1 £¨B£©cosx
x £¨D£©ln2x
A.lim(ex?1)?0B.limcosx?1x?0x?0C.lim2x?1D.lim?lnx??x?0x?0
´ð°¸£º£¨A£© Àý5 º¯Êý
?x2?1x?2f(x)?? µ±x?2ʱ£¬f(x)¼«ÏÞ´æÔÚ£¬
x?2?x?aÔòa=_____¡£
x?2lim?f(x)?lim?(x?a)?2?ax?2½â£º¡ß
x?2lim?f(x)?lim?(x2?1)?5x?2
2+a=5 ¡àa=3 Àý6 ÏÂÁнáÂÛÕýÈ·µÄÊÇ£¨ £©¡£
sinx1?1 )?e£¨B£©lim£¨A£©lim(1?x??x?0xxx£¨C£©limxsinx?01?0£¨D£©lim(1?x)x??x1x?e
´ð°¸£º£¨C£© Àý7 Éè
0?x?2x?1 £¬Ôòa=£¨ £©Ê±£¬f(x)ÔÚx=0´¦Á¬Ðø¡£ f(x)??0?x?a?2½â£ºf(0)=1
x?0?x?0limf(x)?lim?(a?2)?a?2x?0lim?f(x)?lim?(2x?1)?1x?0
¡àa+2=1 a=-1
(A)0 £¨B£©1 £¨C£©2 £¨D£©-1 ´ð°¸£º£¨D£© Àý8 ÊýÁÐ1£¬0£¬-1£¬1£¬0£¬-1£¬¡¡£¨ £©¡£ £¨A£©ÊÕÁ²ÓÚ-1 £¨B£©ÊÕÁ²ÓÚ1 £¨C£©ÊÕÁ²ÓÚ0 ´ð°¸£º£¨D£© Àý9 Çó¼«ÏÞ
x2?5x?61£®lim
x?3x?3½â£ºÔʽ
?lim(x?2)(x?3)?lim(x?2)?1
x?3x?3x?32n2?12£®lim
x??3n2?2n?3½â£ºÔʽ
2??limx??1n23?23?nn2?2 3x?1x2?1lim(?)12 3£®
x?1½â£ºÔʽ
?limx?1?2x?111?lim?lim?
x?1(x?1)(x?1)x?1(x?1)(x?1)x?1x?124£®limsin3x
x?0xsin3x.3=3 3x½â£ºÔʽ =limx?05£®lim½â£ºÔʽ
1?cosx 2x?0x2sin2xxsin2?2lim(2)2.1?1
x?0xx24221x?limx?06£®lim(1?kx)
x?0½â£ºÔʽ
?lim[1?(?kx)]x?0?1(?k)kx?e?k
7£®lim(1?x??2x) xx22?22½â£ºÔʽ=lim(1?)?e
x?0x
x2?5x?68£®lim 2x?3x?9½â£ºÔʽ?lim(x?2)(x?3)x?21?lim?
x?3(x?3)(x?3)x?3x?369£®limx?01?x?1
x1?x?1x(1?x?1)11?x?11 2½â£ºÔʽ
?lim(1?x?1)(1?x?1)x(1?x?1)x?0?limx?0?limx?0?10£®lim(1?x??12x?5) x½â£ºÔʽ
111?lim(1?)2x.lim(1?)5?lim(1?)x.2.1?e2 x??x??x??xxx11£®lim2nsinn??x 2n½â£ºÔʽ
sin?limn??x2n.x?x
x2n2x3?112£®lim
x??5x2?3½â£ºÔʽ
13x?lim??
x??53?xx32?sin(x2?4)13£®lim
x?2x?2½â£ºÔʽ
?lim?lim?4
sin(x2?4)x?4sin(x2?4)x?422x?2.(x?2).lim(x?2)
x?2x?2 Èý¡¢µ¼ÊýÓë΢·Ö Àý1 ÇóÇúÏßy?exÔÚx=1´¦µÄÇÐÏß µÄ·½³Ì¡£ ½â£º
y'?ex,y'x?1?e
Ïà¹ØÍÆ¼ö£º