µÚÒ»·¶ÎÄÍø - רҵÎÄÕ·¶ÀýÎĵµ×ÊÁÏ·ÖÏíÆ½Ì¨

ÊýÖµ·ÖÎöʵÑéºÍ³ÌÐò

À´Ô´£ºÓû§·ÖÏí ʱ¼ä£º2025/9/30 6:19:23 ±¾ÎÄÓÉloading ·ÖÏí ÏÂÔØÕâÆªÎĵµÊÖ»ú°æ
˵Ã÷£ºÎÄÕÂÄÚÈݽö¹©Ô¤ÀÀ£¬²¿·ÖÄÚÈÝ¿ÉÄܲ»È«£¬ÐèÒªÍêÕûÎĵµ»òÕßÐèÒª¸´ÖÆÄÚÈÝ£¬ÇëÏÂÔØwordºóʹÓá£ÏÂÔØwordÓÐÎÊÌâÇëÌí¼Ó΢ÐźÅ:xxxxxxx»òQQ£ºxxxxxx ´¦Àí£¨¾¡¿ÉÄܸøÄúÌṩÍêÕûÎĵµ£©£¬¸ÐлÄúµÄÖ§³ÖÓëÁ½⡣

itmax=100; end

if nargin<2 ep=1e-5; end

n=length(A); u=ones(n,1);

index=0;k=0;m1=0; invA=inv(A); while k<=itmax

v=invA*u;[vmax,i]=max(abs(v)); m=v(i);u=v/m; if abs(m-m1)

m1=m;k=k+1; end

µÚ¶þ²½£º½«Ëù¸ø¾ØÕó´úÈë³ÌÐòµÃ³ö½á¹û¡£

??121??£¬¦Ë1=-6.4210£¬X1=£¨-0.0462 -0.3749 1.0000£©T£»¦Ë3=3.4723£¬

A??2?41????11?6??x3=£¨1.0000 0.5229 0.2422£©¡£

?4?2??25??71A???31??14???87T

T

73?18?1147??£¬¦Ë1=21.3053£¬X1=£¨0.8724 0.5401 0.9973 0.5644 0.4972 7235??2651?3532??5124??1.0000£©£»¦Ë6=1.6214¡£

Î塢ʵÑé½áÂÛ

Çón½×·½ÕóAµÄÌØÕ÷ÖµºÍÌØÕ÷ÏòÁ¿£¬Ò²ÊÇʵ¼ÊÖг£³£Åöµ½µÄÎÊÌ⡣ͨ¹ý´Ë´ÎʵÑéÕÆÎÕÁËÓÃÃÝ·¨ºÍ·´ÃÝ·¨ÇóÒ»¸ö·½ÕóµÄ×î´óÌØÕ÷ÖµºÍÌØÕ÷ÏòÁ¿£¬¾ø¶ÔÖµ×îСµÄÌØÕ÷ÖµºÍÌØÕ÷ÏòÁ¿¡£

ʵÑé°Ë ³£Î¢·Ö·½³Ì³õÖµÎÊÌâÊýÖµ½â·¨

Ò»¡¢ÎÊÌâÌá³ö

¿ÆÑ§¼ÆËãÖо­³£Óöµ½Î¢·Ö·½³Ì£¨×飩³õÖµÎÊÌ⣬ÐèÒªÀûÓÃEuler·¨£¬¸Ä½øEuler·¨£¬Rung-Kutta·½·¨ÇóÆäÊýÖµ½â£¬ÖîÈçÒÔÏÂÎÊÌ⣺ £¨1£©

??4x?xy?y?y??y?0??0 ? 0?x?2

·Ö±ðÈ¡h=0.1,0.2,0.4ʱÊýÖµ½â¡£ ³õÖµÎÊÌâµÄ¾«È·½ây?£¨2£©

4?5e?x2¡£

ÓÃr=3µÄAdamsÏÔʽºÍÔ¤ - УʽÇó½â

?y??x2?y2??y??1??0 ?1?x?0

È¡²½³¤h=0.1£¬ÓÃËĽױê×¼R-K·½·¨ÇóÖµ¡£ £¨3£©

0?x?1

ÓøĽøEuler·¨»òËĽױê×¼R-K·½·¨Çó½â È¡²½³¤0.01,¼ÆËãy(0.0y5),??y2?y1????y1?y2?y???y3?3??0???1y1y2?0??0y3?0??1y(0.Êý1Öµ½â£¬²Î¿¼½á¹û

y1(0.15)??0.9880787,y2(0.15)?0.1493359,y3(0.15)?0.8613125¡£

£¨4£©ÀûÓÃËĽױê×¼R- K·½·¨Çó¶þ½×·½³Ì³õÖµÎÊÌâµÄÊýÖµ½â £¨I£©

(II)

?y???3y??2y?0??y?0??0,y??0??1 0?x?1,h?0.02

?y???0.11?y2y??y?0?y?0??1,y??0??0 ? 0?x?1,h?0.1

??(III)

y??y??x?e?1?y?0??1,y??0??0 ? 0?x?2,h?0.1 (IV) ?

?y???siny?0?? ?y?0??1,y?0??0 0?x?4,h?0.2

¶þ¡¢ÒªÇó

1¡¢ ¸ù¾Ý³õÖµÎÊÌâÊýÖµËã·¨£¬·Ö±ðÑ¡Ôñ¶þ¸ö³õÖµÎÊÌâ±à³Ì¼ÆË㣻 2¡¢ ÊÔ·Ö±ðÈ¡²»Í¬²½³¤£¬¿¼²ìij½Úµã´¦xjÊýÖµ½âµÄÎó²î±ä»¯Çé¿ö£» 3¡¢ ÊÔÓò»Í¬Ëã·¨Çó½âij³õÖµÎÊÌ⣬½á¹ûÓкÎÒì³££» 4¡¢ ·ÖÎö¸÷¸öËã·¨µÄÓÅȱµã¡£

Èý¡¢Ä¿µÄºÍÒâÒå

1¡¢ ÊìϤ¸÷ÖÖ³õÖµÎÊÌâµÄËã·¨£¬±à³öËã·¨³ÌÐò£» 2¡¢ Ã÷È·¸÷ÖÖËã·¨µÄ¾«¶ÈÓëËùÑ¡²½³¤ÓÐÃÜÇйØÏµ£»

3¡¢ ͨ¹ý¼ÆËã¸ü¼ÓÁ˽â¸÷ÖÖËã·¨µÄÓÅÔ½ÐÔ¡£ ËÄ¡¢ÊµÑé²½Öè

function [x,y]=euler(fun,x0,xfinal,y0,n); if nargin<5,n=50; end

h=(xfinal-x0)/n; x(1)=x0;y(1)=y0; for i=1:n;

x(i+1)=x(i)+h;

y(i+1)=y(i)+h*feval(fun,x(i),y(i)); end

ʵÑé³ÌÐò¼°·ÖÎö £¨¢ñ£© £¨1£©¡¢Ëã·¨³ÌÐò

function E =Euler_1(fun,x0,y0,xN,N) % EulerÏòǰ¹«Ê½£¬ÆäÖÐ % funΪһ½×΢·Ö·½³ÌµÄº¯Êý % x0,y0Ϊ³õʼÌõ¼þ

% xNΪȡֵ·¶Î§µÄÒ»¸ö¶Ëµã % hÎªÇø¼ä²½³¤ % NÎªÇø¼ä¸öÊý % xΪXn¹¹³ÉµÄÏòÁ¿ % yΪyn¹¹³ÉµÄÏòÁ¿

x=zeros(1,N+1);y=zeros(1,N+1); x(1)=x0;y(1)=y0; h=(xN-x0)/N; for n=1:N

x(n+1)=x(n)+h;

y(n+1)=y(n)+h*feval(fun,x(n),y(n)); end T=[x',y']

function z=f(x,y) z=4*x/y-x*y; (2)¡¢ÔËÐгÌÐò

>> Euler_1('f',0,3,2,20) ½á¹û £º

>> Euler_1('f',0,3,2,20) T = 0 3.0000

0.1000 2.9836 0.2000 2.9517 0.3000 2.9058 0.4000 2.8481 0.5000 2.7810 0.6000 2.7073 0.7000 2.6297 0.8000 2.5511 0.9000 2.4739 1.0000 2.4004 1.1000 2.3325 1.2000 2.2714 1.3000 2.2177

1.4000 2.1717 1.5000 2.1332 1.6000 2.1017 1.7000 2.0765 1.8000 2.0567 1.9000 2.0414 2.0000 2.0299

Î塢ʵÑé½áÂÛ

ºÜ¶à¿ÆÑ§¼¼ÊõºÍ¹¤³ÌÎÊÌâ³£ÓÃ΢·Ö·½³ÌµÄÐÎʽ½¨Á¢ÊýѧģÐÍ£¬Òò´Ë΢·Ö·½³ÌµÄÇó½âÊǺÜÓÐÒâÒåµÄ£¬µ«¶ÔÓÚ¾ø´ó¶àÊýµÄ΢·Ö·½³ÌÎÊÌâºÜÄÑ»òÕ߸ù±¾²»¿ÉÄܵõ½ËüµÄ½âÎö½â£¬Òò´Ë£¬Ñо¿Î¢·Ö·½³ÌµÄÊýÖµ·½·¨ÊǷdz£ÓÐÒâÒåµÄ¡£

ËÑË÷¸ü¶à¹ØÓÚ£º ÊýÖµ·ÖÎöʵÑéºÍ³ÌÐò µÄÎĵµ
ÊýÖµ·ÖÎöʵÑéºÍ³ÌÐò.doc ½«±¾ÎĵÄWordÎĵµÏÂÔØµ½µçÄÔ£¬·½±ã¸´ÖÆ¡¢±à¼­¡¢ÊղغʹòÓ¡
±¾ÎÄÁ´½Ó£ºhttps://www.diyifanwen.net/c2kr8l2gl7q17c19373fh7l7tx29ybm00g3i_12.html£¨×ªÔØÇë×¢Ã÷ÎÄÕÂÀ´Ô´£©

Ïà¹ØÍÆ¼ö£º

ÈÈÃÅÍÆ¼ö
Copyright © 2012-2023 µÚÒ»·¶ÎÄÍø °æÈ¨ËùÓÐ ÃâÔðÉùÃ÷ | ÁªÏµÎÒÃÇ
ÉùÃ÷ :±¾ÍøÕ¾×ðÖØ²¢±£»¤ÖªÊ¶²úȨ£¬¸ù¾Ý¡¶ÐÅÏ¢ÍøÂç´«²¥È¨±£»¤ÌõÀý¡·£¬Èç¹ûÎÒÃÇ×ªÔØµÄ×÷Æ·ÇÖ·¸ÁËÄúµÄȨÀû,ÇëÔÚÒ»¸öÔÂÄÚ֪ͨÎÒÃÇ£¬ÎÒÃǻἰʱɾ³ý¡£
¿Í·þQQ£ºxxxxxx ÓÊÏ䣺xxxxxx@qq.com
ÓåICP±¸2023013149ºÅ
Top