2x2y2x2y25.(1)依题意e=,设C1:2+2=1,C2:2+2=1,由对称性,四个焦点构成的四
22bb2b4b1边形为菱形,且面积S=创2b22b=22,解得:b2=1.
2x2x2y22所以椭圆C1:+y=1,C2:+=1.
22422x0y0(2)(i)设P(x0,y0),则+=1,A-2,0,B24()(2,0.
)kPA=y0x0+2,kPB=y0x0-2.
所以:kPA?kPB22y04-2x0=2=-2. 2x0-2x0-2直线PA,PB斜率之积为常数-2. x12(ii)设E(x1,y1),则+y12=1.
2kEA=y1x1+2,kEB=y1x1-2,
所以:kEA?kEB12x1y12,同理:kFA?kFB==-2x12-2x0-22211--1, 2所以:kFA鬃kFBkFAkFB=1,由kEA=kPA,kFB=kPB,结合(i)有 4kEA?kFB
-1. 86.解:(Ⅰ)根据题意得c?1,e?∴a?2,c?1,b?1,
c2, ?a2x2故椭圆C的方程为?y2?1.
2(Ⅱ)设P点坐标为(x1,y0)2x02,则?y0?1,
2222|MP|?x0?(y0?2)2?2?2y0?(y0?2)2??y0?4y0?6??(y0?2)2?10,
∵?1≤y0≤1,
∴当y0??1时,MP取得最大值3.
∴|MP|最大值为3,此时P点坐标为(0,?1).
11
x2(Ⅲ)设P点(x,y),则?y2?1,
2P点到F(1,0)的距离为:
x21212(x?1)?y?(x?1)?1??x?2x?2?(x?4x?4),
222222?12(2?x)2?(2?x), 22P到直线x?2的距离为2?x, 2(2?x)2, ∵2?2?x2故P到F(1,0)的距离与到定直线的距离之比为常数
2. 2?a243??3?c?a?2x2?7.解:⑴由?2c?23得 ? 所以椭圆C的方程为?y2?1.
4?b?1?222?a?b?c??1⑵①因为A1??2,0?,A2?2,0?,M?4,2?,所以MA1的方程为y?(x?2),代入
3x2?4y2?4,
41x2?4+4[(x?2)]2?0,即(x+2)[(x?2)+(x+2)]?0,
93因为xA1??2,所以xP?10121012,则yP?,所以点P的坐标为(,). 1313131364同理可得点Q的坐标为(,?).
55②设点M?x0,y0?,由题意,x0??2.因为A1??2,0?,A2?2,0?, 所以直线MA1的方程为
y?y0y(x?2),代入x2?4y2?4,得x2?4+4[0(x?2)]2?0,
x0?2x0?224y0(x+2)]?0,因为xA1??2, 即(x+2)[(x?2)+2(x0?2) 12
28y02?4(x0?2)y0(x0?2)24(x0+2)2所以xP?,则,故点P的坐标为y???2P22222(x?2)?4y4y0(x0+2)+4y0001+2(x0?2)4(x0+2)24(x0?2)y0(?2,). 2(x0+2)2+4y0(x0?2)2?4y02?4(x0-2)2?4(x0?2)y0?2,). 同理可得点Q的坐标为(2(x0-2)2+4y0(x0?2)2?4y02因为P,Q,B三点共线,所以kPB?kQB,
4(x0?2)y0(x0?2)2?4y02yQyP. ?xP?1xQ?1?4(x0?2)y0(x0?2)y0?(x0?2)y0(x0?2)2?4y02所以,即, ??222222(x?2)?12y?3(x?2)?4y?4(x0?2)00004?x0+2??2?1?2?1222(x0?2)?4y0?x0+2?+4y02由题意,y0?0,所以
x0?2x0?2. ?(x0?2)2?12y023(x0?2)2?4y02即3(x0?2)(x0?2)2?4(x0?2)y02?(x0?2)(x0?2)2?12(x0?2)y02.
x02x02x0222所以(x0?4)(?y0?1.若?y02?1,则点M在椭?y0?1)?0,则x0?4?0或
444圆上,P,Q,M为同一点,不合题意.故x0?4,即点M始终在定直线x?4上.16分
8.(Ⅰ)解:设F(c,0),由
113c113e,即??,可得a2-??caa(a?c)|OF||OA||FA|c2=3c2,又a2-c2=b2=3,所以c2=1,因此a2=4.
x2y2??1. 所以,椭圆的方程为43(Ⅱ)解:设直线l的斜率为k(k?0),则直线l的方程为y?k(x?2).设
B(xB,yB),由方程组
?x2y2?1??3?4?y?k(x?2)?,消去
y,整理得
(4k2?3)x2?16k2x?16k2?12?0.
8k2?68k2?6?12kx?y?解得x?2,或x?,由题意得,从而. BB2224k?34k?34k?3 13
9?4k212k,2).由由(Ⅰ)知,F(1,0),设H(0,yH),有FH?(?1,yH),BF?(24k?34k?39?4k212kyH9?4k2?2?0,解得yH?.因此直线BF?HF,得BF?HF?0,所以24k?34k?312k19?4k2. MH的方程为y??x?k12k?19?4k220k2?9?y??x?设M(xM,yM),由方程组?.在?MAOk12k消去y,解得xM?212(k?1)?y?k(x?2)?中,?MOA??MAO?|MA|?|MO|,即(xM?2)?yM?xM?yM,化简得xM?1,
22226620k2?9k??k?即,解得或. ?14412(k2?1)所以,直线l的斜率的取值范围为(??,?
66]?[,??). 44x2y29.解:(Ⅰ)∵椭圆C的方程为??1,
1612∴a?4,b?23,c?2, ∴e?∵
c1?,|FA|?2,|AP|?m?4, a2|FA|21??, |AP|m?42∴m?8.
(Ⅱ)若直线l的斜率不存在,则有S1?S2,|PM|?|PN|,符合题意, 若直线l的斜率存在,设直线l的方程为y?k(x?2),M(x1,y1),N(x2,y2), ?x2y2?1??由?1612,得(4k2?3)x2?16k2x?16k2?48?0, ?y?k(x?2)?16k216k2?48可知??0恒成立,且x1?x2?2,x1x2?,
4k?34k2?3∵kPM?kPN?y1yk(x1?2)k(x2?2)?2?? x1?8x2?8x1?8x2?8?k(x1?2)(x2?8)?k(x2?2)(x1?8)
(x1?8)(x2?8) 14
?2kx1x2?10k(x1?x2)?32k
(x1?8)(x2?8)16k2?4816k22k??10k?2?32k24k?34k?3??0,
(x1?8)(x2?8)∴∠MPF?∠NPF,
∵△PMF和△PNF的面积分别为:
S1?∴
11|PF||PM|sin∠MPF,S2?|PF||PN|sin∠NPF, 22S1|PM|. ?S2|PN|rr10.解:(1)∵?a?b?(m,?),
∴直线AP的方程为:y?rr又?b?4a?(?m,?4),
?m(x?m)①式,
∴直线BP的方程为:y??24(x?m)②式, ?mx2y2422由①式,②式消去入得y??2(x?m),即2??1,
m4mx2y2故点P的轨迹方程为2??1.
m4当m?2时,轨迹E是以(0,0)为圆心,以2为半径的圆,
当m?2时,轨迹E是以原点为中心,以(?m2?4,0)为焦点的椭圆, 当0?m?2时,轨迹E是以原点为中心,以(0,?4?m2)为焦点的椭圆. x2y2(2)当m?22时,??1,
84∵M为轨迹E是任意一点, ∴设M(22cos?,2sin?),
∴|MC|?(22cos??1)2?(2sin?)2 ?2??4cos2??42cos??5?4?cos??????3 2??2∵cos??[?1,1],
15
相关推荐: