匀速圆周运动的实例分析
典型例题1——关于汽车通过不同曲面的问题分析
一辆质量
t的小轿车,驶过半径
)
m的一段圆弧形桥面,求:
(重力加速度
(1)若桥面为凹形,汽车以20m/s的速度通过桥面最低点时,对桥面压力是多大? (2)若桥面为凸形,汽车以10m/s的速度通过桥面最高点时,对桥面压力是多大? (3)汽车以多大速度通过凸形桥面顶点时,对桥面刚好没有压力? 解:
(1)汽车通过凹形桥面最低点时,在水平方向受到牵引力F和阻力f.在竖直方向受到桥面向上的支持力 持力 即
和向下的重力
的合力为
.由向心力公式有:
,如图(甲)所示.圆弧形轨道的圆心在汽车上方,支
,这个合力就是汽车通过桥面最低点时的向心力,
与重力
,
解得桥面的支持力大小为
根据牛顿第三定律,汽车对桥面最低点的压力大小是
N.
(2)汽车通过凸形桥面最高点时,在水平方向受到牵引力F和阻力f,在竖直方向受到竖直向下的重力 方,重力 力,即
和桥面向上的支持力 与支持力
的合力为
,如图(乙)所示.圆弧形轨道的圆心在汽车的下
,这个合力就是汽车通过桥面顶点时的向心
,由向心力公式有
,
解得桥面的支持力大小为
根据牛顿第三定律,汽车在桥的顶点时对桥面压力的大小为 (3)设汽车速度为
N.
时,通过凸形桥面顶点时对桥面压力为零.根据牛顿第三定律,这时桥
就是汽车驶过桥
面对汽车的支持力也为零,汽车在竖直方向只受到重力G作用,重力 顶点时的向心力,即
,由向心力公式有
,
解得:
汽车以30 m/s的速度通过桥面顶点时,对桥面刚好没有压力.
典型例题2——细绳牵引物体做圆周运动的系列问题
一根长 的细绳,一端拴一质量 端做圆周运动,求:
的小球,使其在竖直平面内绕绳的另一
(1)小球通过最高点时的最小速度? (2)若小球以速度 小球将如何运动. 【分析与解答】
(1)小球通过圆周最高点时,受到的重力 必须全部作为向心力 ,否则重力G中的多余部分将把小球拉进圆内,而不能实现沿竖直圆周运动.所以小球通过圆周最高点的条件应为
,当
时,即小球受到的重力刚好全部作为通过圆周最高点的向心力,绳对
,由向心力
通过周围最高点时,绳对小球的拉力多大?若此时绳突然断了,
小球恰好不施拉力,如图所示,此时小球的速度就是通过圆周最高点的最小速度 公式有:
解得:
(2)小球通过圆周最高点时,若速度v大于最小速度 时绳对小球要施拉力F,如图所示,此时有
,所需的向心力
将大于重力G,这
解得: N
若在最高点时绳子突然断了,则提供的向心力mg小于需要的向心力 方向飞出做离心运动(实际上是平抛运动)
,小球将沿切线
典型例题3——转动系统中的惯性力
一辆质量为 为
的汽车以速度 在半径为
的水平弯道上做匀速圆周运动.汽车左、右轮相距
.求:
,重心离地高度为 ,车轮与路面之间的静摩擦因数为
(1)汽车内外轮各承受多少支持力; (2)汽车能安全行驶的最大速度是多少?
汽车左转弯行驶时受力情况如图1所示,图中 分别为汽车内、外轮受到的摩擦力.如果选一个和汽车一起做圆周运动的参照系,则汽车是静止不动的,但必须在汽车的质心处加上一个
惯性离心力f,其大小为 以内轮着地点
,方向沿半径方向向外,
为转轴,由合力矩为零可列出
将 代入得
由竖直方向受力平衡可得
汽车安全行驶时,要求既不打滑,又不会倾倒.汽车不打滑时,应有 的最大速度
,汽车允许
汽车不倾倒的条件是
,即
汽车不倾翻的最大速度:
越大,左、右轮间距
从 和 的结果可以看出,汽车轮胎与地面之间的静摩擦因数 离越宽,车身重心越低,汽车的行驶越稳定.
相关推荐: