2019-2020年高考数学压轴题集锦——导数及其应用
1.已知函数f(x)?lnx?a. x(1)若函数f(x)有零点,求实数a的取值范围; (2)证明:当a?
2.已知函数f(x)?x?alnx(a?R),F(x)?bx(b?R). (1)讨论f(x)的单调性;
(2)设a?2,g(x)?f(x)?F(x),若x1,x2(0?x1?x2)是g(x)的两个零点,且
22?x时,f(x)?e. ex0?
x1?x2,试问曲线y?g(x)在点x0处的切线能否与x轴平行?请说明理由. 23.已知函数f(x)?x?mx?nx(m,n?R)
(1)若f(x)在x?1处取得极大值,求实数m的取值范围;
(2)若f(1)?0,且过点P(0,1)有且只有两条直线与曲线y?f(x)相切,求实数m的值.
'32 1
4.已知函数f(x)?xe,g(x)?2x. (1)求函数f(x)的单调区间; (2)求证:?x?R,f(x)?g(x)
5.已知函数f(x)=
2x3x﹣ax+b在点(e,f(e))处的切线方程为y=﹣ax+2e. lnx(Ⅰ)求实数b的值;
(Ⅱ)若存在x∈[e,e2],满足f(x)≤
6.已知函数f(x)?lnx?1+e,求实数a的取值范围. 41211ax?bx?1的图像在x?1处的切线l过点(,). 222(1)若函数g(x)?f(x)?(a?1)x(a?0),求g(x)的最大值(用a表示); (2)若a??4,f(x1)?f(x2)?x1?x2?3x1x2?2,证明:x1?x2?
1. 2 2
7.已知函数f(x)?xlnx?a32,g(x)?x?x?3,a?R. x(1)当a??1时,求曲线y?f(x)在x?1处的切线方程;
(2)若对任意的x1,x2?[,2],都有f(x1)?g(x2)成立,求实数a的取值范围.
8.设函数f(x)?e?ax?2 (1)求f(x)的单调区间;
(2)若a?1,k为整数,且当x?0时,函数,求k的最大值.
9.设函数f(x)?x?bln(x?1).
(1)若对定义域内的任意x,都有f(x)?f(1)成立,求实数b的值; (2)若函数f(x)的定义域上是单调函数,求实数b的取值范围; (3)若b??1,证明对任意的正整数n,
212xk?xf?(x)?1恒成立,其中f?(x)为f(x)的导x?1?f(k)?1?2k?1n113?1?33?1. 3n 3
10.已知函数f(x)?a?e(x?1)lna?x1(a?0且a?1),e为自然对数的底数. a(Ⅰ)当a?e时,求函数y?f(x)在区间x??0,2?上的最大值; (Ⅱ)若函数f(x)只有一个零点,求a的值.
11.已知函数f(x)?x?1,g(x)?2alnx. x(1)当a??1时,求F(x)?f(x)?g(x)的单调递增区间;
(2)设h(x)?f(x)?g(x),且h(x)有两个极值x1,x2,其中x1?(0,],求
13h(x1)?h(x2)的最小值.
12.已知函数f(x)=lnx+x2﹣2ax+1(a为常数). (1)讨论函数f(x)的单调性;
a
(2)若存在x0∈(0,1],使得对任意的a∈(﹣2,0],不等式2me(a+1)+f(x0)>
a2+2a+4(其中e为自然对数的底数)都成立,求实数m的取值范围.
4
相关推荐: