压轴大题抢分专练(四)
x2y2
1.过椭圆C:2+2=1(a>b>0)右焦点F(1,0)的直线与椭圆C交于A,B两点,自A,B向直
ab|AA1|
线x=5作垂线,垂足分别为A1,B1,且=5.
|AF|
(1)求椭圆C的方程;
(2)记△AFA1,△FA1B1,△BFB1的面积分别为S1,S2,S3,证明:解:(1)设A(x,y),则|AA1|=|5-x|,|AF|=
S1·S3
是定值,并求出该定值. 2
S2
2
2
x-1
2
|AA1|xy+y,由=5,得+=1,
|AF|54
2
而A是椭圆C上的任一点,∴椭圆C的方程为+=1.
54
(2)证明:由题意知,直线AB的斜率不可以为0,而可以不存在,∴可设直线AB的方程为x=my+1.
设A(x1,y1),B(x2,y2),
x2y2
x=my+1,??22由?xy+=1,??54
1
2
得(4m+5)y+8my-16=0,
22
8m16
∴y1+y2=-2,y1y2=-2.①
4m+54m+511
由题意,S1=|AA1||y1|=|5-x1||y1|,
22
S3=|BB1||y2|=|5-x2||y2|, S2=|A1B1|·4=2|y1-y2|,
∴=
1
2
12
S1S315-x1
=·S2162
14-my1·16
5-x2y1-y2
2
-y1y2
2
4-my2y1-y2
-y1y2
2
1y1y2[16-4my1+y2+my1y2]=-·,
16y1+y22-4y1y2将①代入,化简并计算可得∴
S1S31
=, S242
S1·S31
是定值,且该定值为. 2
S24
?1?2n*
2.设an=x,bn=??,Sn为数列{an·bn}的前n项和,令fn(x)=Sn-1,x∈R,n∈N.
n??
- 1 -
?2n-1?
?的前n项和Tn; (1)若x=2,求数列?
?
an?
?2?*
(2)求证:对任意n∈N,方程fn(x)=0在xn∈?,1?上有且仅有一个根;
?3?
1*
(3)求证:对任意p∈N,由(2)中xn构成的数列{xn}满足0 n2n-1n解:(1)∵x=2,∴an=2,令cn=n, 2 Tn=c1+c2+…+cn=+2+…+ 1132n-1 Tn=2+3+…+n+1, ② 2222 13 222n-1 , ① n2 1?2n-111?11 ①-②得Tn=+2?2+3+…+n?-n+1 2?222?221?1? 2?1-n-1?2?2?2n-132n+31 =+2×-n+1=-n+1, 21222 1-22n+3 ∴Tn=3-n. 2 xn* (2)证明:对任意n∈N,当x>0时,由函数fn(x)=-1+x+2+2+…+2(x∈R,n∈N), 23n* x2x3 xn-1 可得f′(x)=1+++…+>0,∴函数f(x)在(0,+∞)上是增函数. 23nxx2 111 令fn(xn)=0,当n≥2时,fn(1)=2+2+…+2>0,即fn(1)>0. 23n??2??2??2??2?n?2?2???2??3??411n?2?i?????3?≤-+·? ?? 又fn??=-1++?3??3??3? 3?2+2+2+…+2?34i=2?3??3? 234n?? ?2?2?1-?2?n-1? ??????11?3???3?? 21-3 =-+× 34 1?2?n-1 =-×??<0, 3?3? ?2?根据函数的零点判定定理,可得存在唯一的xn∈?,1?,满足fn(xn)=0. ?3? 当n=1时,显然存在唯一的x1=1满足f1(x1)=0. ?2?* 综上所述,对任意n∈N,方程fn(x)=0在xn∈?,1?上有且仅有一个根. ?3? - 2 - xn+1 (3)证明:当x>0时,∵fn+1(x)=fn(x)+ n+1 由fn+1(x)在(0,+∞)上单调递增, 可得xn+1 即对任意的n,p∈N,xn-xn+p>0. * 2 >fn(x),∴fn+1(xn)>fn(xn)=fn+1(xn+1)=0. xnn由于fn(xn)=-1+xn+2+2+…+2=0,① 23nx2x3nnn+1 xnxn+pn+p?fn+p(xn+p)=-1+xn+p+2+2+…+2+? 23n?n+1 x2x3n+pn+p+2 xnn+p2+ n+2n+pxn+p2+…+ n+p2 ?=0,?? ② 用①减去②并移项,利用0 kn+pxkxkn+p-xnn+pxn-xn+p=? +? 2 2 kkk=2k=n+1 n≤ n+pxkk=n+1 ? k2 n+p< n+p1 n+p? k2 kk-1k=n+1k=n+1 1 111 =-<. nn+pn综上可得,对于任意p∈N,由(2)中xn构成的数列{xn} 1 满足0 * n - 3 -
相关推荐: