学生课题名称 :容斥原理 授课教师 :刘彬
教学目标 1:了解容斥原理二量重叠和三量重叠的内容; 2:掌握容斥原理的在组合计数等各个方面的应用.
知识点一、两量重叠问题
在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:AB?A?B?AB(其中符号““和”或者“或”的意思;符号“
”读作“并”,相当于中文
”读作“交”,相当于中文“且”的意思.)则称这一公式为包
含与排除原理,简称容斥原理.图示如下:A表示小圆部分,B表示大圆部分,C表示大圆与小圆的公共部分,记为:AB,即阴影面积.图示如下:A表示小圆部分,B表示大圆部分,C表示大圆
B,即阴影面积.
与小圆的公共部分,记为:A
1.先包含——A?B
重叠部分AB计算了2次,多加了1次; 2.再排除——A?B?AB
把多加了1次的重叠部分AB减去.
包含与排除原理告诉我们,要计算两个集合A、B的并集AB的元素的个数,可分以下两步进行:
第一步:分别计算集合A、B的元素个数,然后加起来,即先求A?B(意思是把A、B的一切元素都
“包含”进来,加在一起); 第二步:从上面的和中减去交集的元素个数,即减去C?AB(意思是“排除”了重复计算的元素个数).
例1 某班共有46人,参加美术小组的有12人,参加音乐小组的有23人,有5人两个小组都参加了.这个班既没参加美术小组也没参加音乐小组的有多少人?
例2 对全班同学调查发现,会游泳的有20人,会打篮球的有25人.两项都会的有10人,两项都不会的有9人.这个班一共有多少人?
第 1 页
例3 在46人参加的采摘活动中,只采了樱桃的有18人,既采了樱桃又采了杏的有7人,既没采樱桃又没采杏的有6人,问:只采了杏的有多少人?
例4 育才小学画展上展出了许多幅画,其中有16幅画不是六年级的,有15幅画不是五年级的,五、六年级共展出25幅画,其他年级的画共有多少幅?
11例5 一次数学测验,甲答错题目总数的,乙答错3道题,两人都答错的题目是题目总数的.求
46甲、乙都答对的题目数.
变式练习
1. 四(二)班有48名学生,在一节自习课上,写完语文作业的有30人,写完数学作业的有20人,语文数学都没写完的有6人.
⑴ 问语文数学都写完的有多少人? ⑵ 只写完语文作业的有多少人?
2. 四年级一班有45人,其中26人参加了数学竞赛,22人参加了作文比赛,12人两项比赛都参加了.一班有多少人两项比赛都没有参加?
3. 全班有40人,某次英语考试由两部分组成,结果全班有12人得满分,第一部分有25人做对,第二部分有19人有错,问两部分都有错的有多少人?
4. 甲、乙、丙三个小组学雷锋,为学校擦玻璃,其中68块玻璃不是甲组擦的,52块玻璃不是乙组擦的,且甲组与乙组一共擦了60块玻璃.那么,甲、乙、丙三个小组各擦了多少块玻璃?
5. 47名学生参加数学和语文考试,其中语文得分95分以上的14人,数学得分95分以上的21人,两门都不在95分以上的有22人.问:两门都在95分以上的有多少人?
第 2 页
知识点二、三量重叠问题
A类、B类与C类元素个数的总和?A类元素的个数?B类元素个数?C类元素个数?既是A类又是B类的元素个数?既是B类又是C类的元素个数?既是A类又是C类的元素个数?同时是A类、B类、C类的元素个数.用符号表示为:ABC?A?B?C?AB?BC?AC?ABC.图示如下:
图中小圆表示A的元素的个数,中圆表示B的元素的个数,大圆表示C的元素的个数.
1.先包含:A?B?C
重叠部分AB、BC、CA重叠了2次,多加了1次. 2.再排除:A?B?C?AB?BC?AC
重叠部分ABC重叠了3次,但是在进行A?B?C? AB?BC?AC计算时都被减掉了.
3.再包含:A?B?C?AB?BC?AC?ABC.
在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.
例1 某班学生手中分别拿红、黄、蓝三种颜色的小旗,已知手中有红旗的共有34人,手中有黄旗的共有26人,手中有蓝旗的共有18人.其中手中有红、黄、蓝三种小旗的有6人.而手中只有红、黄两种小旗的有9人,手中只有黄、蓝两种小旗的有4人,手中只有红、蓝两种小旗的有3人,那么这个班共有多少人?
例2 四年级一班有46名学生参加3项课外活动.其中有24人参加了数学小组,20人参加了语文小组,参加文艺小组的人数是既参加数学小组也参加文艺小组人数的3.5倍,又是3项活动都参加人数的7倍,既参加文艺小组也参加语文小组的人数相当于3项都参加的人数的2倍,既参加数学小组又参加语文小组的有10人.求参加文艺小组的人数.
第 3 页
例3 在某个风和日丽的日子,10个同学相约去野餐,每个人都带了吃的,其中6个人带了汉堡,6个人带了鸡腿,4个人带了芝士蛋糕,有3个人既带了汉堡又带了鸡腿,1个人既带了鸡腿又带了芝士蛋糕.2个人既带了汉堡又带了芝土蛋糕.问:
⑴ 三种都带了的有几人? ⑵ 只带了一种的有几个?
例4 某学校派出若干名学生参加体育竞技比赛,比赛一共只有三个项目,已知参加长跑、跳高、标枪三个项目的人数分别为10、15、20人,长跑、跳高、标枪每一项的的参加选手中人中都有五分之一的人还参加了别的比赛项目,求这所学校一共派出多少人参加比赛?
例5 全班有25个学生,其中17人会骑自行车,13人会游泳,8人会滑冰,这三个运动项目没有人全会,至少会这三项运动之一的学生数学成绩都及格了,但又都不是优秀.若全班有6个人数学不及格,那么,
⑴ 数学成绩优秀的有几个学生? ⑵ 有几个人既会游泳,又会滑冰?
第 4 页
相关推荐: