第一范文网 - 专业文章范例文档资料分享平台

新课标高中数学选修4-4参数方程综合测试

来源:用户分享 时间:2025/6/18 6:45:30 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

19.解:设C点的坐标为(x,y),则??x?cos?,

?y??1?sin?即x2?(y?1)2?1为以(0,?1)为圆心,以1为半径的圆. ∵A(?2,0),B(0,2), ∴|AB|?4?4?22, 且AB的方程为

xy??1, ?22即x?y?2?0,

12?(?1)232, ∴点C到直线AB的最大距离为1?2132)?3?2. ∴S?ABC的最大值是?22?(1?22???3x?1?tcosx?1?t????6220.解:(1)直线的参数方程为?,即?,

?y?1?tsin??y?1?1t??6??2?3x?1?t??2,代入x2?y2?4, (2)把直线??y?1?1t??2得(1?则圆心(0,?1)到直线AB的距离为|?(?1)?2|?32. 2321t)?(1?t)2?4,t2?(3?1)t?2?0, 22t1t2??2,则点P到A,B两点的距离之积为2.

21.解:(1)当t?0时,y?0,x?cos?,即x?1,且y?0; 当t?0时,cos??22x1t?t(e?e)2y2,sin??y1t?t(e?e)2,

而x?y?1,

x21t(e?e?t)24?1t?t2(e?e)4?1;

(2)当??k?,k?Z时,y?0,x??1t(e?e?t),即x?1,且y?0; 2?1t?t当??k??,k?Z时,x?0,y??(e?e),即x?0;

22

2x?t?te?e??k??cos?,k?Z时,得?当??,

2y2?et?e?t??sin??2x2y?t2e???2x2y2x2y?cos?sin?t?t?)(?), 即?,得2e?2e?(cos?sin?cos?sin???t2x2y??2e?cos??sin?x2即

y2cos2??sin2??1. 22.解:(1)由圆C的参数方程??x?5cos??y?5sin??x2?y2?25,

?设直线l的参数方程为①?x??3?tcos??(t为参数??y??3), 2?tsin?将参数方程①代入圆的方程x2?y2?25

得4t2?12(2cos??sin?)t?55?0, ∴△?16[9(2cos??sin?)2?55]?0, 所以方程有两相异实数根t1、t2,

∴|AB|?|t21?t2|?9(2cos??sin?)?55?8,

化简有3cos2??4sin?cos??0,

解之cos??0或tan???34, 从而求出直线l的方程为x?3?0或3x?4y?15?0.

(2)若P为AB的中点,所以t1?t2?0,

由(1)知2cos??sin??0,得tan???2,

故所求弦AB的方程为4x?2y?15?0(x2?y2?25).

备用题:

1.已知点P(xx?3?8cos?0,y0)在圆????2?8sin?上,则?yx0、y0的取值范围是( A.?3?x0?3,?2?y0?2 B.3?x0?8,?2?y0?8 C.?5?x0?11,?10?y0?6

D.以上都不对

1.C 由正弦函数、余弦函数的值域知选C.

?x?1?2t. (t为参数)被圆x2?y2?9截得的弦长为( )

?y?2?t1212995 C.5 D.10 A. B.55552?x?1?5t??x?1?2t?x?1?2t?5?2.B ?,把直线?代入 ??y?2?ty?2?t1???y?1?5t??5?x2?y2?9得(1?2t)2?(2?t)2?9,5t2?8t?4?0,

2.直线?12816125. |t1?t2|?(t1?t2)2?4t1t2?(?)2??,弦长为5|t1?t2|?5555?x?2pt23.已知曲线?(t为参数,p为正常数)上的两点M,N对应的参数分别为t1和t2,,

?y?2pt且t1?t2?0,那么|MN|?_______________.

3.4p|t1| 显然线段MN垂直于抛物线的对称轴,即x轴,|MN|?2p|t1?t2|?2p|2t1|.

4.参数方程??x?cos?(sin??cos?)(?为参数)表示什么曲线?

?y?sin?(sin??cos?)yy2112,cos??4.解:显然?tan?,则2?1?,

y2xxcos2??1x2112tan?222?cos?, x?cos??sin?cos??sin2??cos???2221?tan?yy2?1y2y11xxx(1?)??1, 即x??,??2222xxyyy21?21?21?2xxxy2y??1, 得x?xx22即x?y?x?y?0.

5.已知点P(x,y)是圆x?y?2y上的动点, (1)求2x?y的取值范围;

(2)若x?y?a?0恒成立,求实数a的取值范围. 5.解:(1)设圆的参数方程为?22?x?cos?,

?y?1?sin?2x?y?2cos??sin??1?5sin(???)?1,

∴?5?1?2x?y?5?1.

(2)x?y?a?cos??sin??1?a?0,

∴a??(cos??sin?)?1??2sin(??即a?

?4)?1恒成立,

2?1.

新课标高中数学选修4-4参数方程综合测试.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c2qorv6b9vj9epjw24kmh_2.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top