Öб±´óѧ2014½ì±ÏÒµÂÛÎÄ
Ó¦ÓÃMallatËã·¨½øÐÐС²¨·Ö½â£¬¶øÎÞÐë¾ßÌ司³ö³ß¶Èº¯Êý?ºÍС²¨º¯Êý?£¬Õâ¾ÍÊÇMallatËã·¨Ö®ËùÒÔÄܹ»¹ã·º¡¢¿ì½ÝÓ¦ÓõÄÔÒò¡£
3.2 Ï¡Êè±íʾÀíÂÛ
ÔÚ½éÉÜÏ¡Êè±íʾÀíÂÛ[19,20]֮ǰ£¬ÎÒÃÇÏȶÔһЩ»ù±¾¸ÅÄî½øÐÐÃèÊö£º Ï¡ÊèÐźÅ(Sparse Signal)µÄ¶¨Ò壺ÈôÐźÅxÖ»ÓÐÓÐÏÞ¸ö(±ÈÈçK¸ö)·ÇÁã²ÉÑùµã£¬¶øÆäËü²ÉÑùµã¾ùΪ0£¬Ôò³ÆÐźÅXÊÇKÏ¡ÊèµÄ¡£
ʵ¼ÊÖУ¬Í¨³£Ê±ÓòÄÚµÄ×ÔÈ»ÐźŶ¼ÊÇ·ÇÏ¡ÊèµÄ£¬ÑϸñÏ¡ÊèµÄÐźźÜÉÙ£¬¾¡¹ÜÓÐλÖõÄÖµºÜС£¬µ«²»Ò»¶¨µÈÓÚÁ㣬ÓÚÊÇÒýÈë¿ÉѹËõÐźÅ(Compressible Signal)µÄ¸ÅÄî¡£
¿ÉѹËõÐźŵ͍Ò壺Èç¹ûijһÐźÅÔÚ²»¶ªÊ§ÈκÎÐÅÏ¢µÄÌõ¼þÏÂͨ¹ýijÖֱ任£¬¿ÉÒԵõ½Ï¡ÊèÐźţ¬Ò²¾ÍÊÇ˵ÐźÅÔÚijЩ±ä»»ÓòÊÇÏ¡ÊèµÄ£¬ÔòÎÒÃdzÆÖ®Îª¿ÉѹËõÐźš£
½üÄêÀ´£¬Ëæ×ÅÏÖ´ú´«¸ÐÆ÷¼¼ÊõµÄ·¢Õ¹£¬Ðí¶àÁìÓòÃæÁÙ×ÅÈÕÒæÅòÕ͵ĴóÁ¿Êý¾Ý£¬ÈçµØÕðÊý¾Ý¡¢µØÇòÎïÀíÊý¾Ý¡¢¹¤Òµ¿ØÖÆÊý¾Ý¡¢ÒôƵÊý¾Ý¡¢ÌìÎÄÊý¾Ý¡¢»ùÒòÊý¾ÝµÈ¡£
16
Öб±´óѧ2014½ì±ÏÒµÂÛÎÄ
ÈçºÎʵÏÖ¶ÔÕâЩÊý¾Ý¸üΪÁé»î¡¢¼ò½àºÍ×ÔÊÊÓ¦µÄ±í´ïÒѳÉΪһ¸ö±¶ÊܹØ×¢µÄÎÊÌâ
[21]
¡£
ͨ³££¬Ðźŵķֽâ±ä»»ÊǸù¾ÝÐźű¾ÉíµÄÌØµã£¬Í¨¹ýÈ縵Á¢Ò¶±ä»»¡¢¶Ìʱ¸µ
Á¢Ò¶±ä»»¡¢ÀëÉ¢ÓàÏұ任¡¢Ð¡²¨±ä»»µÈ£¬½«ÐźŷֽâÔÚÒ»×éÍ걸µÄÕý½»»ùÉÏ£¬´Ó¶øÔÚÕâЩ±ä»»ÓòÉϱí´ïÔʼÐźţ¬Õâ¾ÍÊÇÐźŵıíʾ¡£ËüÃǹ²Í¬µÄÌØµã¾ÍÊǸø¶¨ÐźŵıíʾÐÎʽΨһ£¬Ò»µ©ÐźŵÄÌØÐÔÓë»ùº¯Êý²»ÍêȫƥÅ䣬ÄÇôËù»ñµÃµÄ·Ö½â½á¹û¾Í²»Ò»¶¨ÊÇÐźŵÄÏ¡Êè±íʾÁË¡£Òò´Ë£¬Ñ°ÇóеÄÐźÅÏ¡Êè±íʾ·½·¨±Ø½«´øÀ´ÐźűíʾµÄÉî¿Ì±ä¸ï¡£
1993Ä꣬ÔÚС²¨·ÖÎöÀíÂ۵Ļù´¡ÉÏ£¬MallatºÍZhangÂÊÏÈÌá³öÁËÐźŻùÓÚ¹ýÍ걸Ô×Ó¿âÉϵķֽâ˼Ï룬ͨ¹ýÐźÅÔÚ¹ýÍ걸¿â(over£®complete dictionary)Éϵķֽ⣬ÓÃÀ´±íʾÐźŵĻù¿ÉÒÔ×ÔÊÊÓ¦µØ¸ù¾ÝÐźű¾ÉíÌØµãÁé»îѡȡ[22]¡£·Ö½âµÄ½á¹û£¬½«¿ÉÒԵõ½Ò»¸ö·Ç³£¼ò½àµÄ±í´ï¡£ÕâÖÖÔڱ任ÓòÓþ¡Á¿ÉٵĻùº¯ÊýÀ´×¼È·µØ±íʾÔʼÐźţ¬¾ÍÊÇÐźŵÄÏ¡Êè±íʾ(Sparse Representation)¡£Ëü¿ª´´ÁËÐźŵÄÏ¡Êè±íʾÕâÒ»ÐźŷÖÎöµÄз½Ïò¡£
ÓÉÓÚÐźŵÄÏ¡Êè±íʾµÄÓÅÁ¼ÌØÐÔ£¬ÐźÅÏ¡Êè±íʾµÄÑо¿ºÜ¿ì´ÓһάÐźÅÍÆ¹ãµ½¶þάͼÏñ±íʾÑо¿ÉÏ£¬²¢±íÏÖ³ö¼«´óµÄÓÅÔ½ÐÔ¡£ÓÈÆäÊǽüÄêÀ´ÔÚÊýѧºÍ¹¤³ÌÁìÓòͬʱÐËÆðµÄѹËõ´«¸ÐÓëÏ¡Êè±íʾÀíÂÛ£¬Ê¹µÃÏ¡Êè±íʾÀíÂÛµÄÑо¿ºÍÓ¦ÓÃÔ½À´Ô½ÒýÆðÖÚ¶àÈËÊ¿µÄÖØÊÓ¡£
ÐźŵÄÏ¡Êè±íʾËã·¨Ñо¿×îÔç¿ÉÒÔ×·Ëݵ½1982Ä꣬HuberÔÚͳ¼Æ»Ø¹éÁìÓòʱÊ×´ÎÌá³öÁËͶӰ׷×Ù·¨¡£Èç½ñ£¬ÐźŵÄÏ¡Áð±íʾԽÀ´Ô½±íÏÖ³öËüµÄÓÅÔ½ÐÔ£¬ÓÈÆäÊǽüÄêÀ´Ñ¹Ëõ´«¸ÐÀíÂÛµÄÌá³ö£¬Ñ¹Ëõ´«¸ÐÓëÏ¡Êè±íʾÀíÂÛÑо¿ÒýÆðÁËÖÚ¶àÈËÊ¿µÄ¹Ø×¢¡£Ê×ÏȽéÉÜÒ»ÏÂѹËõ´«¸ÐÓëÏ¡Êè±íʾµÄÀíÂÛ[23]¡£
½üÁ½Äêµ®ÉúÁËÒ»ÖÖеÄѹËõ´«¸Ð(Compressive£¯Compressed Sensing)ÀíÂÛ£¬¸Ã·½·¨ÔÚ»ñÈ¡ÐźÅͬʱ£¬¶ÔÊý¾Ý½øÐÐÊʵ±Ñ¹Ëõ£¬Óŵã¾ÍÊÇÕë¶Ô¿ÉÏ¡Êè±íʾµÄÐźţ¬½«´«Í³µÄÊý¾Ý²É¼¯ÓëÊý¾ÝѹËõºÏ¶þΪһ¡£ÓÉÓÚѹËõ´«¸ÐÀíÂÛµÄÌá³ö£¬Ï¡Êè±íʾԽÀ´Ô½±íÏÖ³öËüµÄÓÅÔ½ÐÔ£¬Ðí¶àÈ˽«Ä¿¹âͶÏòÕâ¸öÁìÓò£¬²¢½øÐÐÁË´óÁ¿µÄÑо¿¡£ÏÂÃæ½éÉÜѹËõ´«¸ÐÓëÏ¡Êè±íʾµÄ¹ý³Ì[20,23]¡£
ѹËõ´«¸ÐºËÐÄÊÇÏßÐÔ²âÁ¿¹ý³Ì£®Éèx(n)Ϊ´«Í³²ÉÑùµÃµ½µÄÊý×ÖÐźţ¬³¤¶ÈΪ
17
Öб±´óѧ2014½ì±ÏÒµÂÛÎÄ
N£¬¶øÍ¨¹ýѹËõ´«¸ÐÔò¿ÉÖ±½ÓµÃµ½y(m)£¬³¤¶ÈΪM¡£ËüÃǵĹØÏµÊÇy??x¡£?Ϊ±íʾ£¬¼ÇΪx??s¡£s(n)ΪK-Ï¡ÊèµÄ(Ö»ÓÐK¸ö·ÇÁãÔª)£¬Ôò²âÁ¿¹ý³Ì¿ÉÒÔÖØÐÂдΪy??s£¬ÆäÖÐ????ΪM?N¾ØÕó¡£ÎÒÃÇÎÞ·¨Ö±½Ó´Óy(m)»Ö¸´³öx(n)ÎÒÃÇ¿Éͨ¹ýÇó½âÏÂÁÐÓÅ»¯ÎÊÌâµÃµ½ÔÐźÅx(n)ÔÚT±ä»»ÓòÄÚµÄÏ¡ÊèÐÎʽs?n?£º
minssl s.t.?s?y £¨3-13£©
ÎÒÃdzÆÖ®Îª»ùÓÚѹËõ´«¸ÐµÄÏ¡Êè±íʾ£¬ÊµÖÊÊÇÐźÅÖØ¹¹¹ý³Ì¡£ ÏÂͼΪѹËõ´«¸Ð¹ý³Ì£º
Ŀǰ¸ÃÁìÓòµÄÑо¿¹¤×÷Ö÷Òª¼¯ÖÐÔÚ´«¸Ð¾ØÕóÓëÖØ¹¹Ëã·¨µÄ¹¹ÔìµÈÀíÂÛ²ãÃæ£º 1¡¢´«¸Ð¾ØÕóµÄ¹¹Ôì·½Ãæ£º
£¨1£© ´«¸Ð¾ØÕó?Ðè¾ß±¸µÄ³ä·ÖÌõ¼þ£¬¼´Ò»Ö²»È·¶¨ÐÔÔÀí(Uniform Uncertainty Principle£¬UUP)¡£ ¶ÔÈÎÒâµÄK-Ï¡ÊèÏòÁ¿x£¬Èç¹û
0.8M2M22x2??x2?1.2x2 (3-14) NNÔò³Æ?M?N×ñѼ¯ºÏ´óСΪKµÄÒ»Ö²»È·¶¨ÔÀí£¬¶øÇÒ´«¸Ð¾ØÕóµÄÐÐÊýMÓëÐźÅÏ¡Êè¶ÈKÖ®¼äÐëÂú×ãM¡ÝK¡¤log(N)¡£
ÔÚËùÓиø¶¨´óСµÄËæ»ú¾ØÕóÖÐÑ¡ÔñÂú×ãUUPÌØÕ÷µÄ¾ØÕóÊÇNP×éºÏÄÑÎÊÌ⣬¼ÆËãÁ¿Ì«´ó£¬Ä¿Ç°²ÉÓý϶àµÄÊǸß˹¾ØÕóºÍ±´Å¬Àû¾ØÕó£¬ËüÃÇÒѱ»ÑéÖ¤Âú×ãUUPÌØÕ÷¡£
18
Öб±´óѧ2014½ì±ÏÒµÂÛÎÄ
(2) Donoho´Ó¶¨ÐԺͶ¨Á¿µÄ½Ç¶È¸ø³öÁ˲âÁ¿¾ØÕó?ËùÒªÂú×ãµÄÈý¸öÌØÕ÷£º¢Ù²âÁ¿¾ØÕóµÄÁÐÏòÁ¿ÐëÂú×ãÒ»¶¨µÄÏßÐÔ¶ÀÁ¢ÐÔ£»¢Ú²âÁ¿¾ØÕóµÄÁÐÏòÁ¿ÌåÏÖijÖÖÀàËÆÔëÉùµÄ¶ÀÁ¢Ëæ»úÐÔ£»¢ÛÂú×ãÏ¡Êè¶ÈµÄ½âÊÇÂú×ãll·¶Êý×îСµÄÏòÁ¿¡£
2¡¢Öع¹Ëã·¨·½Ãæ
ÔÚÇ°ÃæµÄÏ¡Êè±íʾµÄ¹úÄÚÍâÑо¿ÏÖ×´ÖУ¬ÎÒÃÇÌá³öÁ˼¸ÖÖÓÉÏ¡Êè±íʾÐγɵÄÖØ¹¹Ëã·¨[24]¡£´óÌåÉÏ£¬Öع¹Ëã·¨¿É´ÖÂԵعéÄÉΪÒÔÏÂÈýÀࣺÕë¶Ôf0·¶Êý×îСÌá³öµÄһϵÁÐ̰À·Ëã·¨£¬Õë¶Ôfl·¶Êý×îСÌá³öµÄÏßÐԹ滮×îÓÅ»¯Ëã·¨£¬ÒÔ¼°Í³¼ÆÓÅ»¯Öع¹Ëã·¨¡£Ä¿Ç°³£ÓõÄÖØ¹¹Ëã·¨Ö÷ÒªÊÇÆ¥Åä×·×ÙËã·¨¼°¸Ä½øËã·¨£¬ÁíÍâÒ²ÔÚ³¢ÊÔÌݶÈͶӰµÈ¶àÖÖ͹ÓÅ»¯Ëã·¨¡£
mins0 s.t.?s?yÊÇÕë¶Ôl0·¶Êý×îСµÄÖØ¹¹Ëã·¨£¬ËüÊÇÒ»¸öNPÄÑÎÊÌ⣬Ëù
sÒԺܶàËã·¨¶¼ÊÇÕë¶Ômins0 s.t.y??s2??Ìá³öµÄ£¬¾ùΪ̰À·Ëã·¨¡£±ÈÈçOMP
sËã·¨?16?¡¢ÕýÔò»¯Õý½»Æ¥Åä×·×Ù?17?¡¢×îÓÅÕý½»Æ¥Åä×·×Ù(Optimized Orthogonal Matching Pursuit£¬OOMP)¡¢?18?Ï¡Êè×ÔÊÊӦƥÅä×·×Ù?19?¡£Õë¶Ôll·¶Êý×îСµÄÖØ¹¹Ëã·¨¿ÉÒÔ½â¾öNPÄÑÎÊÌ⣬½«NPÄÑÎÊÌâת»¯ÎªÇó½âÏßÐԹ滮×îÓÅ»¯ÎÊÌâ¡£±ÈÈç»ù×·×ÙËã·¨(Basis Pursuit£¬BP)?20?¡¢ÌݶÈͶӰϡÊèÖØ¹¹(Gradient Projection for Sparse Reconstruction£¬GPSR)?21?µÈ¡£
ÁíÍ⣬ÒÔSparse BayesianΪ´ú±íµÄͳ¼ÆÓÅ»¯Ëã·¨Ò²ÔÚÓ¦Óã¬ÆäÐÔÄܽéÓÚÁ½ ÕßÖ®¼ä¡£
±È½Ï¾µäµÄÖØ¹¹Ëã·¨ÓУºMPËã·¨¡¢»ùÓÚÆ¥Åä×·×Ù·½·¨£¨BMP£©¡¢Õý½»Æ¥Åä×·×Ù·¨£¨OMP£©ÒÔ¼°ÆäËû·½·¨¡£
ËäÈ»ÓÐÒÔÉÏÖØ¹¹Ëã·¨Ìá³ö£¬²¢ÇÒÕâЩËã·¨Äܹ»Öع¹³öÐźţ¬µ«È±·¦ÑϸñµÄÀíÂÛ»ù´¡£¬ÊÕÁ²ÐÔÒ²²»Äܱ£Ö¤£¬¶øÇÒÓеÄËã·¨ËٶȺÜÂý¡£Òò´Ë¹¹ÔìÎȶ¨µÄ£¬ÊÕÁ²ÐÔÇ¿µÄËã·¨Êǵ±Ç°Ñ¹Ëõ´«¸Ð¼±Ðè½â¾öµÄÎÊÌâ¡£ 3.3 »ùÓÚÏ¡Êè±íʾµÄͼÏñÈ¥ÔëÄ£ÐÍ
±¾½Ú½¨Á¢ÁËÒ»ÖÖ»ùÓÚÏ¡Êè±íʾµÄС²¨È¥ÔëÄ£ÐÍ¡£½«Ð¡²¨È¥ÔëµÄÎÊÌâת»¯ÎªÒ»¸ö×îÓÅ»¯ÎÊÌ⣬²¢Í¨¹ýÇó½â¸ÃÎÊÌ⣬µÃµ½²»º¬ÔëÉùµÄС²¨ÏµÊý£¬»Ö¸´Ð¡²¨ÏµÊýµÄ
19
Ïà¹ØÍÆ¼ö£º