故选:D.
11.(2018?烟台)如图,二次函数y=ax2+bx+c的图象与x轴交于点A(﹣1,0),B(3,0).下列结论:①2a﹣b=0;②(a+c)2<b2;③当﹣1<x<3时,y<0;④当a=1时,将抛物线先向上平移2个单位,再向右平移1个单位,得到抛物线y=(x﹣2)2﹣2.其中正确的是( )
A.①③ B.②③ C.②④ D.③④
解:①图象与x轴交于点A(﹣1,0),B(3,0), ∴二次函数的图象的对称轴为x=∴
=1
=1
∴2a+b=0,故①错误; ②令x=﹣1, ∴y=a﹣b+c=0, ∴a+c=b,
∴(a+c)2=b2,故②错误;
③由图可知:当﹣1<x<3时,y<0,故③正确; ④当a=1时,
∴y=(x+1)(x﹣3)=(x﹣1)2﹣4
将抛物线先向上平移2个单位,再向右平移1个单位, 得到抛物线y=(x﹣1﹣1)2﹣4+2=(x﹣2)2﹣2,故④正确; 故选:D.
12.(2018?威海)矩形ABCD与CEFG,如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=( )
9 / 30
A.1 B. C. D.
解:如图,延长GH交AD于点P,
∵四边形ABCD和四边形CEFG都是矩形,
∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1, ∴AD∥GF, ∴∠GFH=∠PAH, 又∵H是AF的中点, ∴AH=FH,
在△APH和△FGH中, ∵
,
∴△APH≌△FGH(ASA), ∴AP=GF=1,GH=PH=PG, ∴PD=AD﹣AP=1, ∵CG=2、CD=1, ∴DG=1, 则GH=PG=×故选:C.
13.(2018?泰安)如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为( )
=
,
10 / 30
A.3 B.4 C.6 D.8
解:∵PA⊥PB, ∴∠APB=90°, ∵AO=BO, ∴AB=2PO,
若要使AB取得最小值,则PO需取得最小值,
连接OM,交⊙M于点P′,当点P位于P′位置时,OP′取得最小值, 过点M作MQ⊥x轴于点Q,
则OQ=3、MQ=4, ∴OM=5, 又∵MP′=2, ∴OP′=3, ∴AB=2OP′=6, 故选:C.
14.(2018?威海)如图,在正方形ABCD中,AB=12,点E为BC的中点,以CD为直径作半圆CFD,点F为半圆的中点,连接AF,EF,图中阴影部分的面积是( )
11 / 30
A.18+36π B.24+18π C.18+18π D.12+18π
解:作FH⊥BC于H,连接FH,如图, ∵点E为BC的中点,点F为半圆的中点, ∴BE=CE=CH=FH=6, AE=
=6
,
易得Rt△ABE≌△EHF, ∴∠AEB=∠EFH, 而∠EFH+∠FEH=90°, ∴∠AEB+∠FEH=90°, ∴∠AEF=90°,
∴图中阴影部分的面积=S正方形ABCD+S半圆﹣S△ABE﹣S△AEF =12×12+?π?62﹣×12×6﹣?6=18+18π. 故选:C.
×6
15.(2018?临沂)如图,点E、F、G、H分别是四边形ABCD边AB、BC、CD、DA的中点.则下列说法:
①若AC=BD,则四边形EFGH为矩形; ②若AC⊥BD,则四边形EFGH为菱形;
③若四边形EFGH是平行四边形,则AC与BD互相平分; ④若四边形EFGH是正方形,则AC与BD互相垂直且相等. 其中正确的个数是( )
12 / 30
相关推荐: