第一范文网 - 专业文章范例文档资料分享平台

福建省南平市2016年中考数学试题(word版,含解析)

来源:用户分享 时间:2025/6/6 15:16:07 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

九年级下数学

(2)拓展:如图2,若点F在CD的延长线上(不与D重合),过点P作PG⊥PF,交射线DA于点G,你认为(1)中DE、DG、DP之间的数量关系是否仍然成立?若成立,给出证明;若不成立,请写出它们所满足的数量关系式,并说明理由.

【考点】四边形综合题.

【分析】(1)①若证PG=PF,可证△HPG≌△DPF,已知∠DPH=∠HPG,由旋转可知∠GPF=∠HPD=90°及DE平分∠ADC得△HPD为等腰直角三角形,即∠DHP=∠PDF=45°、PD=PH,即可得证;

②由△HPD为等腰直角三角形,△HPG≌△DPF知HD=即可得;

HD=(2)过点P作PH⊥PD交射线DA于点H,先证△HPD为等腰直角三角形可得PH=PD,再证△HPG≌△DPF可得HG=DF,根据DH=DG﹣HG=DG﹣DF可得DG﹣DF=【解答】解:(1)①∵∠GPF=∠HPD=90°,∠ADC=90°, ∴∠GPH=∠FPD, ∵DE平分∠ADC, ∴∠PDF=∠ADP=45°, ∴△HPD为等腰直角三角形, ∴∠DHP=∠PDF=45°, 在△HPG和△DPF中, ∵

DP.

DP,

DP,HG=DF,根据DG+DF=DG+GH=DH

∴△HPG≌△DPF(ASA), ∴PG=PF; ②结论:DG+DF=

DP,

由①知,△HPD为等腰直角三角形,△HPG≌△DPF,

九年级下数学

∴HD=DP,HG=DF,

∴HD=HG+DG=DF+DG, ∴DG+DF=

(2)不成立,数量关系式应为:DG﹣DF=

DP,

DP;

如图,过点P作PH⊥PD交射线DA于点H,

∵PF⊥PG,

∴∠GPF=∠HPD=90°, ∴∠GPH=∠FPD,

∵DE平分∠ADC,且在矩形ABCD中,∠ADC=90°, ∴∠HDP=∠EDC=45°,得到△HPD为等腰直角三角形, ∴∠DHP=∠EDC=45°,且PH=PD,HD=∴∠GHP=∠FDP=180°﹣45°=135°, 在△HPG和△DPF中, ∵

DP,

∴△HPG≌△DPF, ∴HG=DF,

∴DH=DG﹣HG=DG﹣DF, ∴DG﹣DF=

DP.

【点评】本题主要考查等腰直角三角形的性质、全等三角形的判定与性质、矩形的性质的综合运用,灵活运用全等三角形的判定与性质将待求证线段关系转移至其他两线段间关系是解题的关键.

九年级下数学

福建省南平市2016年中考数学试题(word版,含解析).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c2r1ni2xjxk2xzhu2kzn0175lm26kup00a0h_7.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top