答案:3解析:
n(14)设x1,x2,xn为来自N(u,?)的简单随机样本,统计量T??xi2,2i?1
则ET?________答案:u2??2解析:
三、解答题
(15)(本题满分10分)求极限lim(x?1)x???1x1lnx
解:
1x1lnx1ln(xxx???lim(x?1)?limex????1)lnx?ex???lim1ln(xx?1)lnx?e?e
?1?1?x?1?lnxx?1???x2?xx?1?1limx???x1?lnxlim1x???xxlnx?e1?lnx1limx???x(xx?1)?e1?lnx1limlnxx???x(ex?1)
?e?1(16)(本题满分10分)计算二重积分??(x?y)3dxdy,其中D由曲线x?1?y2与直线x?2y?0
D及x?2y?0围成解:
(17)(本题满分10分)求函数M?xy?2yz在约束条件x?y+z=10下的最大值与最小值解:
222
(18)(本题满分10分)(I)比较?lnt?ln(1?t)?dt与?tnlntdt(n?1,2,)的到小,并说明理由
001n1(II)记un??lnt?ln(1?t)?dt(n?1,2,),求极限limun0n??1n解:
(I)因为当0?t?1时,ln(1?t)?t,
nn所以|lnt|[ln(1?t)]?t|lnt|,于是|lnt|[ln(1?t)]dt??1n0?10tn|lnt|dt。
(II)因为0?而
n|lnt|[ln(1?t)]dt?t??|lnt|dt, 001111n?1n?11nlntd(t)??[tlnt|?tdt] 0??00n?1n?11n1?10tn|lnt|dt????1n?11tlnt|1?, 02n?1(n?1)n?111lnxlnt??limn?1?0,所以?tn|lnt|dt?,
0x???x(n?1)2t?因为limtt?011x故0?n?|lnt|[ln(1?t)]dt?01,
(n?1)2n由夹逼定理得limun?limn??n??0?|lnt|[ln(1?t)]1dt?0。
相关推荐: