第一范文网 - 专业文章范例文档资料分享平台

2014年浙江省宁波市中考数学试卷附详细答案(原版+解析版)

来源:用户分享 时间:2025/5/23 2:14:00 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

∴G点坐标为(1,3), ∵1×3=3, ∴G(1,3)在反比例函数y=的图象上. 点评: 本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征、中心对称的性质和三角形全等的判定与性质;会利用勾股定理进行几何计算. 2

23.(10分)(2014?宁波)如图,已知二次函数y=ax+bx+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点. (1)求二次函数的解析式;

(2)设二次函数的图象与x轴的另一个交点为D,求点D的坐标;

(3)在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时,一次函数的值大于二次函数的值.

考点: 分析: 待定系数法求二次函数解析式;一次函数的图象;抛物线与x轴的交点;二次函数与不等式(组) (1)根据二次函数y=ax+bx+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点,代入得出关于a,b,c的三元一次方程组,求得a,b,c,从而得出二次函数的解析式; (2)令y=0,解一元二次方程,求得x的值,从而得出与x轴的另一个交点坐标; 2

(3)画出图象,再根据图象直接得出答案. 解答: 解:(1)∵二次函数y=ax+bx+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点, 2∴, ∴a=,b=﹣,c=﹣1, ∴二次函数的解析式为y=x﹣x﹣1; (2)当y=0时,得x﹣x﹣1=0; 解得x1=2,x2=﹣1, ∴点D坐标为(﹣1,0); (3)图象如图, 当一次函数的值大于二次函数的值时,x的取值范围是﹣1<x<4. 22点评: 本题考查了用待定系数法求二次函数的解析式以及一次函数的图象、抛物线与x轴的交点问题,是中档题,要熟练掌握. 24.(10分)(2014?宁波)用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成,硬纸板以如图两种方法裁剪(裁剪后边角料不再利用)

A方法:剪6个侧面; B方法:剪4个侧面和5个底面.

现有19张硬纸板,裁剪时x张用A方法,其余用B方法. (1)用x的代数式分别表示裁剪出的侧面和底面的个数;

(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子? 考点: 分析: 一元一次方程的应用;列代数式. (1)由x张用A方法,就有(19﹣x)张用B方法,就可以分别表示出侧面个数和底面个数; (2)由侧面个数和底面个数比为3:2建立方程求出x的值,求出侧面的总数就可以求出结论. 解:(1)∵裁剪时x张用A方法, ∴裁剪时(19﹣x)张用B方法. ∴侧面的个数为:6x+4(19﹣x)=(2x+76)个, 底面的个数为:5(19﹣x)=(95﹣5x)个; (2)由题意,得 , 解得:x=7, ∴盒子的个数为:=30. 解答: 点评: 答:裁剪出的侧面和底面恰好全部用完,能做30个盒子. 本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,列代数式的运用,解答时根据裁剪出的侧面和底面个数相等建立方程是关键. 25.(12分)(2014?宁波)课本的作业题中有这样一道题:把一张顶角为36°的等腰三角形纸片剪两刀,分成3张小纸片,使每张小纸片都是等腰三角形,你能办到吗?请画示意图说明剪法.

我们有多少种剪法,图1是其中的一种方法:

定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.

(1)请你在图2中用两种不同的方法画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(若两种方法分得的三角形成3对全等三角形,则视为同一种)

(2)△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,设∠C=x°,试画出示意图,并求出x所有可能的值; (3)如图3,△ABC中,AC=2,BC=3,∠C=2∠B,请画出△ABC的三分线,并求出三分线的长. 考点: 分析: 相似形综合题;图形的剪拼 (1)45°自然想到等腰直角三角形,过底角一顶点作对边的高,发现形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形,则易得一种情况.第二种情形可以考虑题例中给出的方法,试着同样以一底角作为新等腰三角形的底角,则另一底脚被分为45°和22.5°,再以22.5°分别作为等腰三角形的底角或顶角,易得其中作为底角时所得的三个三角形恰都为等腰三角形.即又一三分线作法. (2)用量角器,直尺标准作30°角,而后确定一边为BA,一边为BC,根据题意可以先固定BA的长,而后可确定D点,再标准作图实验﹣﹣分别考虑AD为等腰三角形的腰或者底边,兼顾AEC在同一直线上,易得2种三角形ABC.根据图形易得x的值. (3)因为∠C=2∠B,作∠C的角平分线,则可得第一个等腰三角形.而后借用圆规,以边长画弧,根据交点,寻找是否存在三分线,易得如图4图形为三分线.则可根据外角等于内角之和及腰相等等情况列出等量关系,求解方程可知各线的长. 解:(1)如图2作图, 解答: (2)如图3 ①、②作△ABC.

2014年浙江省宁波市中考数学试卷附详细答案(原版+解析版).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c2urwu0p0t67f2vc1v0ey6gjog0oh7b0065e_7.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top