第一范文网 - 专业文章范例文档资料分享平台

2019年广西南宁市中考数学试卷(含答案)

来源:用户分享 时间:2025/5/24 22:51:20 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

当a>20时,则W=800+0.8(40a﹣800)=32a+160, 即W=

国旗贴纸需要:1200×2=2400张, 小红旗需要:1200×1=1200面, 则a=

=48袋,b=

=60袋,

总费用W=32×48+160=1696元.

【点评】本题考查分式方程,一次函数的应用;能够根据题意列出准确的分式方程,求费用的最大值转化为求一次函数的最大值是解题的关键.

25.(10分)如图1,在正方形ABCD中,点E是AB边上的一个动点(点E与点A,B不重合),连接CE,过点B作BF⊥CE于点G,交AD于点F. (1)求证:△ABF≌△BCE;

(2)如图2,当点E运动到AB中点时,连接DG,求证:DC=DG;

(3)如图3,在(2)的条件下,过点C作CM⊥DG于点H,分别交AD,BF于点M,N,求

的值.

【考点】SO:相似形综合题.

【分析】(1)先判断出∠GCB+∠CBG=90,再由四边形ABCD是正方形,得出∠CBE=90°=∠A,BC=AB,即可得出结论;

(2)设AB=CD=BC=2a,先求出EA=EB=AB=a,进而得出CE=BG=

a,CG═

a,再求出

a,再判断出△CQD≌△BGC(AAS),进而判断出GQ=CQ,

即可得出结论;

(3)先求出CH=a,再求出DH=a,再判断出△CHD∽△DHM,求出HM=

a,

再用勾股定理求出GH=a,最后判断出△QGH∽△GCH,得出HN=可得出结论.

【解答】(1)证明:∵BF⊥CE, ∴∠CGB=90°, ∴∠GCB+∠CBG=90, ∵四边形ABCD是正方形, ∴∠CBE=90°=∠A,BC=AB, ∴∠FBA+∠CBG=90, ∴∠GCB=∠FBA, ∴△ABF≌△BCE(ASA);

(2)证明:如图2,过点D作DH⊥CE于H, 设AB=CD=BC=2a, ∵点E是AB的中点, ∴EA=EB=AB=a, ∴CE=

a,

=a,即

在Rt△CEB中,根据面积相等,得BG?CE=CB?EB, ∴BG=∴CG=

a,

a,

∵∠DCE+∠BCE=90°,∠CBF+∠BCE=90°, ∴∠DCE=∠CBF,

∵CD=BC,∠CQD=∠CGB=90°, ∴△CQD≌△BGC(AAS), ∴CQ=BG=

a,

a=CQ,

∴GQ=CG﹣CQ=

∵DQ=DQ,∠CQD=∠GQD=90°, ∴△DGQ≌△CDQ(SAS), ∴CD=GD;

(3)解:如图3,过点D作DH⊥CE于H, S△CDG=?DQ=CH?DG, ∴CH=

=a,

在Rt△CHD中,CD=2a, ∴DH=

=a,

∵∠MDH+∠HDC=90°,∠HCD+∠HDC=90°, ∴∠MDH=∠HCD, ∴△CHD∽△DHM, ∴∴HM=

, a,

a,CH=a,

在Rt△CHG中,CG=∴GH=

=a,

∵∠MGH+∠CGH=90°,∠HCG+∠CGH=90°, ∴∠QGH=∠HCG, ∴△QGH∽△GCH, ∴∴HN=

, =a,

∴MN=HM﹣HN=a,

∴=

【点评】此题是相似形综合题,主要考查了全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,判断出△DGQ≌△CDQ是解本题的关键.

26.(10分)如果抛物线C1的顶点在拋物线C2上,抛物线C2的顶点也在拋物线C1上时,那么我们称抛物线C1与C2“互为关联”的抛物线.如图1,已知抛物线C1:y1=x2+x与C2:y2=ax2+x+c是“互为关联”的拋物线,点A,B分别是抛物线C1,C2的顶点,抛物线C2经过点D(6,﹣1).

(1)直接写出A,B的坐标和抛物线C2的解析式;

(2)抛物线C2上是否存在点E,使得△ABE是直角三角形?如果存在,请求出点E的坐标;如果不存在,请说明理由;

(3)如图2,点F(﹣6,3)在抛物线C1上,点M,N分别是抛物线C1,C2上的动点,且点M,N的横坐标相同,记△AFM面积为S1(当点M与点A,F重合时S1=0),△ABN的面积为S2(当点N与点A,B重合时,S2=0),令S=S1+S2,观察图象,当y1≤y2时,写出x的取值范围,并求出在此范围内S的最大值.

2019年广西南宁市中考数学试卷(含答案).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c2v9vq7a1zt371qz5d0ci05ej21u0yu00k2b_7.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top