中继器,集线器,交换器,路由器,网关等等其他互联设备。 (4)工作站
学校校园网工作站使用的计算机不同于校园网中的服务器和家庭使用的多媒体计算机,工作站只要能够满足学生或教师的学习和工作需要即可,我们可以在Intel、AMD、VIA这三个目前主流的PC CPU中进行选择。这三种CPU是三种不同的系统架构,它们各自的性能不同,价格也不同。我们可以通过它们的实用性、可靠性、经济性、应用性几方面来进行比较。 2.2.4 综合布线
综合布线可以实现建筑物内或不同建筑物之间的信号传输,是一种模块化、灵活性极高的建筑物内或建筑物之间的信息传输通道。它既能使语音、数据、图像设备和交换设备与其他管理系统彼此连接,也能使这些设备与外部相连接。综合布线被划分为六个小的子系统,它们是工作区子系统、水平干线子系统、垂直干线总系统、管理间子系统设备间子系统、楼宇(建筑群) 子系统。
2.3 校园网结构分析
一个好的校园网网络设计应该是一个分层的设计,设计模型一般分为三层。从功能上基本可以分为网络中心、教学子网、办公子网、图书馆子网、宿舍区子网以及后勤子网等。为了简化交换网络设计,提高交换网络的可扩展性,在校园内部数据交换模块的部署是分层进行的。
校园网数据交换设备可以划分为三个层次:核心层、汇聚层、接入层。传统意义上的数据交换发生在OSI模型的第二层。现代交换技术还实现了第三层交换和多层交换。高层交换技术的引入不但提高了校园网数据交换的效率,更大大加强了园区网数据交换服务质量,满足了不同类型网络应用程序的需要。
现代交换网络还引入了虚拟局域网(Virtual LAN,VLAN)的概念。VLAN将广播域限制在单个VLAN内部,减小了个VLAN间主机的广播通信对其他VLAN的影响。在VLAN间需要通信的时候,可以利用VLAN间路由技术来实现。当网络管理人员需要管理的交换机数量众多时,可以使用VLAN中继协议(VLAN Trunking Protocol,VTP)简化管理,它只需在单独一台交换机上定义所有VLAN然后通过VTP协议将VLAN定义传播到本管理域中的所有交换机上。这样,大大减轻了网络管理人员的工作负担和工作强度。当校园网络的交换机数量增多、交换机间链路增加时,交换网络的复杂性可能会造成交换环路问题,这需要通过在各交换机上运行生成树协议(Spanning Tree Protocol,STP)来解决。 (1)核心层
功能主要是实现骨干网络之间的优化传输,负责整个校园网的网内数据交换。网络的功能控制最好尽量少在骨干层上实施。
中心交换机应是路由交换机,支持主流的园区骨干技术,如
1000Base-Sx/Lx/Zx/Tx等,同时计划支持未来的骨干技术,如10G等,提供端到端的MultiCast等协议。现在Internet/Intranet的数据流量分布已由过去的“内部80%,外部20%”变为“内部20%,外部80%”,因此,中心交换机需具备较高的路由转发速率,最好是线速的。中心交换机应具有很高的交换背板容量和包转发率,如背板容量在100Gbps以上。 (2)汇聚层
汇聚层主要负责连接接入层接点和核心层中心,汇聚各区域数据流量,必要时,作为网络冗余连接使用。同时,汇聚层交换机还负责本区域内的数据交换。 (3)接入层
接入层在整个网络中接入交换机的数量最多,具有即插即用的特性。对此类交换机的要求,一是价格合理;二是可管理性好,易于使用和维护;三是有足够的吞吐量;四是稳定性好,能够在比较恶劣的环境下稳定工作。
具体设计
3.1 网络设计简介
校园网系统应具有高可靠性,高稳定性、高扩展性等特点 。本方案中选择使用千兆位以太网技术,主干为千兆网,实现各部门相连,100Mbps到部门,10Mbps到桌面,支持终端的移动。
网络主干由主干交换机和分布在各建筑中的主干节点及它们之间的光纤组成。需要选择适当的高速交换机作为网络的主干核心,这关系到网络的整体性能和系统的灵活性。主干网的选择要考虑带宽、可靠性、先进性等特点,要以当前及未来网络技术的发展和业务量的发展为基础,同时兼顾资金的承受能力。以太网机制的即插即用使网络扩充容易,而且扩充成本降低;星型拓扑结构使主干具有良好的可靠性;线路交换的高带宽低延迟更符合现代计算机技术的发展对网络主干的要求,为容量的扩充留有充分的余地。
联网技术包括主干网联网技术,楼宇局域网连接技术和广域网技术。 (1)主干网连接技术
主干网采用交换式1000M以太网连接技术。100Mb/s的网卡能够自动检测所连接的端口是10Mb/s还是100Mb/s,并执行相应的操作。100Mb/s的交换式集线器,
可以提供更高的性能。在该方案中,各主要楼之间采用光纤以全连接拓扑结构通过1000M交换技术进行连接,既保证了主干线的1000M带宽,又保证了主干线路冗余。
(2)楼宇局域网连接技术
校园网为园区网,楼群间子系统采用光缆连接,可提供千兆位的带宽,有充分的扩展余地。垂直子系统则位于高层建筑物的竖井内,可采用大对数双绞线。把管理区子系统并入设备间子系统,集中管理。对于多幢楼宇,可采用多设备间的方法,分为中心设备间和楼栋设备间部分,中心设备间是整个局域网的控制中心,内设有对外(Internet)对内通信的各种网络设备(交
换机、路由器、服务器等),中心交换机通过光缆与楼栋设备间的交换设备相连,以保证数据的高速传输。在此设备间放置布线的线架和网络设备,一端连接楼内来自在各层的主干线缆,一端连接网络中心的光纤。楼内布线包括水平布线和主干布线。 (3)广域网技术
本方案设计的校园网给出两路分别到CHINANET和CERNET的出口,到CHINANET的出口通过路由器采用ISDN专线实现于Internet连接,到CERNET的出口通过路由器的10M局域网口采用微波实现连接。
路由技术:路由协议工作在OSI参考模型的第三层,因此它的作用主要是在通信子网间路由数据包。路由器具有在网络中传递数据时选择最佳路径的能力。除了可以完成主要的路由任务,利用访问控制列表(Access Control List,ACL),路由器还可以用来完成以路由器为中心的流量控制和过滤功能。在本方案中,内网用户不仅通过路由器接入因特网,内网用户之间也通过三层交换机上的路由功能进行数据包交换。
交换技术:现代交换技术还实现了第三层交换和多层交换。高层交换技术的引用不但提高了校园网数据交换的效率,更大大增强了校园网数据交换服务质量,满足了不同类型网络应用程序的需要。
VLAN技术:即虚拟局域网,VLAN将广播域限制在单个VLAN内部,减少了各VLAN间主机的广播通信对其他VLAN的影响。在VLAN间需要通信的时候,可以利用VLAN间路由技术来实现,当网络管理人员需要管理的交换机数量众多时,可以使用VLAN中继协议简化管理,它只需在单独一台交换机上定义所有VLAN。然后通过VTP协议将VLAN定义传播到本管理域中的所有交换机上。这样,大大减轻了网络管理人员的工作负担和工作强度。 3.2 网络拓扑设计方案
本方案采用千兆以太网解决方案,考虑到地理位置和服务点等因素,将
网络中心设在主楼,以主楼为中心,通过光纤把整个校园连接到网络中心的CS1型核心交换机上,构成某大学校园网光纤主干。核心交换机通过Cisco3640路由器和DDN专线将整个校园网连入教育科研网CERNET,即连入国际互联网,同时接入电信网。网络结构分为三层:核心层、汇聚层、接入层。
考虑到传输高速率和扩展的需求,校园网整体采用光纤传输。网络主干采用六芯多模光纤。网络中心到主建筑物节点采用六芯多模光纤连接,在全双工条件下传输距离可达两公里。光纤布线采用星形拓扑结构,这样当过渡到ATM时,不需要重新布线可使整个网络保持原有的拓扑结构。
本校园网网络系统的设计采用层次化的设计模型,即核心层、汇聚层(分布层)、接入层(访问层)。
以上特点分层网络结构可以获得良好的扩展性。根据实际要求,整个校园网采用星型结构,并分为核心层(分布于网络中心内)和接入层(分布在教学楼、行政楼、图书馆、实验楼、工科楼以及学生宿舍各楼内,包括分布广泛的各种低端网络连接/交换设备及各种终端设备)两层。
对于整个网络的拓扑结构为混合型网络拓扑结构,以快速交换机为网络中心的星型结构,各部门以二级交换机为主节点的树形结构。
各主要楼节点的交换机分别用1000Base-SX型的多模光纤与网络中心的核心交换机相连,构成校园网千兆位以太网的主干网络,各节点交换机至桌面采用3/5型双绞线或超五类双绞线100Mbps连接。
因此本校园网络设计的拓扑结构图如图3.1所示。 图3.1 校园网整体拓扑结构图 3.3 设备选择 (1)路由器
Cisco3640型Internet接入路由器一个 (2)交换机
Cisco Catalyst 4006型核心层交换机两个:CS1,CS2 Cisco Catalyst 3550型汇聚层交换机两个:DS1,DS2 Cisco Catalyst 2950型接入层交换机两个:AS1,AS2 (3)服务器
FTP服务器,WWW服务器,E-mail服务器,代理服务器,CAMS服务器,DHCP服务器,DNS服务器,VLAN100服务器群
相关推荐: