һ - רҵ·ĵϷƽ̨

《概率论与数理统计?复旦大学出版?第二章知识题目解?- 百度文库

Դû ʱ䣺2025/6/14 22:14:52 loading ƪĵֻ
˵ݽԤݿܲȫҪĵҪݣwordʹáword΢ź:xxxxxxxQQxxxxxx ܸṩĵл֧½⡣

.

111111 ????66663611 XӲΪļηֲ

36 ?35.Ҫ೤ʹ0ٳһεĸʲС0.9? ⡿XΪ0ֵĴҪn֣

X~b(n,0.1)

0nP(X?1)?1?P(X?0)?1?C0n(0.1)(0.9)?0.9

(0.9)?0.1

n n22 Ҫ22֡ 36.֪

??0,?1?Fx=?x?,2??1,??Fxǣ ķֲ.

x?0,10?x?,

21x?.2A ͣ Bɢͣ C ɢ.

⡿ΪFxڣ,+ޣϵlimF(x)?0

x???x???limF(x)?1,Fxһֲ

Fxx=0Ҳǽ״ߣFxǷɢķֲѡC

37.[a,b]ϣXܶȺΪf(x)=sinx[a,b]⣬f(x)=0 [a,b]

.

ڣ

(A) [0,/2]; (B) [0,]; (C) [/2,0]; (D) [0,

3]. 2/2С⡿[0,]sinx0?sinxdx?1.f(x)ܶȺ

02[0,][??0sinxdx?2?1.f(x)ܶȺ

,0]sinx?0f(x)ܶȺ 233[0,]ϣ?x?ʱsinx<0f(x)ҲܶȺ

22ѡA

38.X~N02ʣȡֵʱX䣨13ĸ ⡿ΪX~N(0,?),P(1?X?3)?P(21?3?X??3?)

??(΢ֵķ

?1)??()g(?)

?g?(?)?(?3?311??)?()??() 22?????

3?212??1?9/2?21e?2?2?21?1/2?2e2?2??1/2??8/2?e[1?3e]?02

?0?224, ?0? ln3ln3 g??(?0)?0 ?0?2ΪֵΩһ ln32ʱX䣨13ĸ ln3ʵ??39.һʱڽijһ̵Ĺ˿XӲɷֲPˣÿ˿͹ij

.

ƷĸΪpҸ˿ǷƷ໥̵Ĺ˿͹ƷYķֲ.

e???m,m?0,1,2,⡿P(X?m)?m!

蹺ijƷΪYڽ̵X=m£Y~b(m,p)

km?kP(Y?k|X?m)?Ck,k?0,1,mp(1?p),m

ȫʹʽ

P(Y?k)??P(X?m)P(Y?k|X?m)

m?k?e???mkk??Cmp(1?p)m?km!m?k??e ?e??m?k???k!(m?k)!p(?p)kk!???mk(1?p)m?k

[?(1?p)]m?k?(m?k)!m?k(?p)k???(1?p)?eek!(?p)k??p?e,k?0,1,2,k!˵̵ӲΪ˵IJɷֲƷԷӲɷֲıΪp.

40.XӲΪ2ֲָ.֤Y=1

ȷֲ.

֤XܶȺΪ

e

2X䣨01ϷӾ

?2e?2x,x?0fX(x)??

0,x?0?PX>0=10<1y0ʱFYy=0

e

2X<1

P0

.

y1ʱFYy=1

?2x0

1?P(X??ln(1?y))2 ??YܶȺΪ

1?ln(1?y)202e?2xdx?y?1,0?y?1 fY(y)??0,?Y~U01 41.XܶȺΪ

?1?3,0?x?1,??2f(x)=?,3?x?6,

?9.?0,??kʹP{Xk}=2/3kȡֵΧ. (2000п) ⡿PXk=

12֪PX

33k<0,P(X

1k1dx??033?3 1 k=1ʱPX

311k11k3ʱPX

031311k22113

03399330k1,P(X

kk>6,PX

ֻе1k3ʱPXk=42.XķֲΪ

2. 3

《概率论与数理统计?复旦大学出版?第二章知识题目解?- 百度文库.doc ĵWordĵصԣ㸴ơ༭ղغʹӡ
Ƽ
Copyright © 2012-2023 һ Ȩ | ϵ
:վز֪ʶȨݡϢ紫ȨתصƷַȨ,һ֪ͨǣǻἰʱɾ
ͷQQxxxxxx 䣺xxxxxx@qq.com
ICP2023013149
Top