.
111111 ????66663611 XӲΪļηֲ
36 ?35.Ҫʹ0ٳһεĸʲС0.9? ⡿XΪ0ֵĴҪn֣
X~b(n,0.1)
0nP(X?1)?1?P(X?0)?1?C0n(0.1)(0.9)?0.9
(0.9)?0.1
n n22 Ҫ22֡ 36.֪
??0,?1?Fx=?x?,2??1,??Fxǣ ķֲ.
x?0,10?x?,
21x?.2A ͣ Bɢͣ C ɢ.
⡿ΪFxڣ,+ޣϵlimF(x)?0
x???x???limF(x)?1,Fxһֲ
Fxx=0Ҳǽ״ߣFxǷɢķֲѡC
37.[a,b]ϣXܶȺΪf(x)=sinx[a,b]⣬f(x)=0 [a,b]
.
ڣ
(A) [0,/2]; (B) [0,]; (C) [/2,0]; (D) [0,
3]. 2/2С⡿[0,]sinx0?sinxdx?1.f(x)ܶȺ
02[0,][??0sinxdx?2?1.f(x)ܶȺ
,0]sinx?0f(x)ܶȺ 233[0,]ϣ?x?ʱsinx<0f(x)ҲܶȺ
22ѡA
38.X~N02ʣȡֵʱX䣨13ĸ ⡿ΪX~N(0,?),P(1?X?3)?P(21?3?X??3?)
??(ֵķ
?1)??()g(?)
?g?(?)?(?3?311??)?()??() 22?????
3?212??1?9/2?21e?2?2?21?1/2?2e2?2??1/2??8/2?e[1?3e]?02
?0?224, ?0? ln3ln3 g??(?0)?0 ?0?2ΪֵΩһ ln32ʱX䣨13ĸ ln3ʵ??39.һʱڽijһ̵Ĺ˿XӲɷֲPˣÿ˿ij
.
ƷĸΪpҸ˿ǷƷ̵Ĺ˿ƷYķֲ.
e???m,m?0,1,2,⡿P(X?m)?m!
蹺ijƷΪYڽ̵X=m£Y~b(m,p)
km?kP(Y?k|X?m)?Ck,k?0,1,mp(1?p),m
ȫʹʽ
P(Y?k)??P(X?m)P(Y?k|X?m)
m?k?e???mkk??Cmp(1?p)m?km!m?k??e ?e??m?k???k!(m?k)!p(?p)kk!???mk(1?p)m?k
[?(1?p)]m?k?(m?k)!m?k(?p)k???(1?p)?eek!(?p)k??p?e,k?0,1,2,k!˵̵ӲΪ˵IJɷֲƷԷӲɷֲıΪp.
40.XӲΪ2ֲָ.֤Y=1
ȷֲ.
֤XܶȺΪ
e
2X䣨01ϷӾ
?2e?2x,x?0fX(x)??
0,x?0?PX>0=10<1y0ʱFYy=0
e
2X<1
P0 . y1ʱFYy=1 ?2x0 1?P(X??ln(1?y))2 ??YܶȺΪ 1?ln(1?y)202e?2xdx?y?1,0?y?1 fY(y)??0,?Y~U01 41.XܶȺΪ ?1?3,0?x?1,??2f(x)=?,3?x?6, ?9.?0,??kʹP{Xk}=2/3kȡֵΧ. (2000п) ⡿PXk= 12֪PX 33k<0,P(X 1k1dx??033?3 1 k=1ʱPX 311k11k3ʱPX 031311k22113 03399330k1,P(X kk>6,PX ֻе1k3ʱPXk=42.XķֲΪ 2. 3