第一范文网 - 专业文章范例文档资料分享平台

通用版2020版高考数学大二轮复习专题突破练20统计与统计案例理

来源:用户分享 时间:2025/5/18 1:56:21 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

当x=10时, =0.3×10+2.5=5.5百斤,所以如果每个有机蔬菜大棚使用堆沤肥料10千克,估计每个有机蔬菜大棚产量的增加量y是5.5百斤.

(2)若该超市一天购进17份这种有机蔬菜,Y1表示当天的利润(单位:元),那么Y1的分布列为

Y1 65 75 85 P

Y1的数学期望是E(Y1)=65 +75 +85

- -

; 若该超市一天购进18份这种有机蔬菜,Y2表示当天的利润(单位:元),那么Y2的分布列为

Y2 60 70 80 90 P 7

Y2的数学期望是E(Y2)=60 +70 +80 +90

-

7 - -

;

又购进17份比购进18份的利润的期望值大,故(24,30),x∈N.

*

-

,求得x>24,故x的取值范围是

7.解(1)由折线图可知统计数据(xi,yi)共6组,即(1,11),(2,13),(3,16),(4,15),(5,20),(6,21),计算可得 (1+2+3+4+5+6)=3.5,

yi= 96=16,

-n =1+2+3+4+5+6-6×3.5=17.5.

2

2

2

2

2

2

2

7 -

7

=2,

故 =16-2×3.5=9, ∴x关于y的线性回归方程为 =2x+9,故x=11时,则 =2×11+9=31,即预测公司2019年3月份(即x=11时)的利润为31百万元.

(2)由频率估计概率,A型材料可使用1个月,2个月,3个月、4个月的概率分别为0.2,0.35,0.35,0.1,

∴A型材料利润的数学期望为(5-10)×0.2+(10-10)×0.35+(15-10)×0.35+(20-10)×0.1=1.75万

元;

B型材料可使用1个月,2个月,3个月、4个月的概率分别为0.1,0.3,0.4,0.2,

∴B型材料利润的数学期望为(5-12)×0.1+(10-12)×0.3+(15-12)×0.4+(20-12)×0.2=1.50万元; ∵1.75>1.50,∴应该采购A型材料.

8.解(1)由表格中的数据,有182.4>79.2,即7

-

7

- 7

, 所以模型①的R小于模型②,说明回归模型②刻画的拟合效果更好.

所以当x=17亿元时,科技改造直接收益的预测值为 =21.3 7-14. ≈ .3×4.1-14.4=72.93(亿元).

2

(2)由已知可得: -20=

=3,所以 =23,

-60= 7

=7.2,所以 =67.2.

所以 +0.7 =67.2+0.7×23=83.3.

所以当x>17亿元时,y与x满足的线性回归方程为: =-0.7x+83.3.

所以当x=20亿元时,科技改造直接收益的预测值 =-0.7×20+83.3=69.3, 所以当x=20亿元时,实际收益的预测值为69.3+10=79.3亿元>72.93亿元, 所以科技改造投入20亿元时,公司的实际收益的更大.

(3)因为P(0.52-0.020.50)=2,P(X≤ .50)= -

=0.977

=0.022 8.

因为P(0.52-0.010.53)= -

=0.158 7,所以

P(0.50

设每台发动机获得的奖励为Y(万元),则Y的分布列为:

Y 0 2 5 0.022 0.818 0.158 P 8 5 7

所以每台发动机获得奖励的数学期望为E(Y)=0×0.0228+2×0.8185+5×0.1587=2.4305(万元).

通用版2020版高考数学大二轮复习专题突破练20统计与统计案例理.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c2wi1e1662o7f1wl0k4bu3bj0w6iip0013o1_5.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top