2??2?m,解得:m?8; 24x1m并整理得:x2?mx?4?0,
22②在直线平移过程中,交点个数有:0个、1个、2个三种情况, 联立y?和y??x?1??m2?4?4≥0时,两个函数有交点,
4解得:m≥8; (4)由(3)得:m≥8.
【提示】(1)x,y都是边长,因此,都是正数,即可求解; (2)直接画出图象即可; (3)①把点?2,2?代入y??x?m即可求解;②在直线平移过程中,交点个数有:0个、2m141个、2个三种情况,联立y?和y = ?x ? 并整理得:x2?mx?4?0,即可
22x求解; (4)由(3)可得.
【考点】反比例函数与一次函数图象的应用. 22.【答案】1
60o
(2)如图2中,设BD交AC于点O,BD交PC于点E.
图2
∵?PAD??CAB?45o, ∴?PAC??DAB, ∵
ABAD??2, ACAPBDAB??2, PCAC∴△DAB:△PAC, ∴?PCA??DBA,
∵?EOC??AOB, ∴?CEO??OABB?45o,
∴直线BD与直线CP相交所成的小角的度数为45o.
(3)如图3-1中,当点D在线段PC上时,延长AD交BC的延长线于H.
图3-1
∵CE?EA,CF?FB, ∴EF∥AB,
∴?EFC??ABC?45o, ∵?PAO?45o, ∴?PAO??OFH, ∵?POA??FOH, ∴?H??APO, ∵?APC?90o,EA?EC, ∴PE?EA?EC, ∴?EPA??EAP??BAH, ∴?H??BAH, ∴BH?BA,
∵?ADP??BDC?45o, ∴?ADB?90o, ∴BD?AH,
∴?DBA??DBC?22.5o, ∵?ADB??ACB?90o, ∴A,D,C,B四点共圆,
?DAC??DBC?22.5o,?DCA??ABD?22.5o,
∴?DAC??DCA?22.5o,
∴DA?DC,设AD?a,则DC?AD?a,PD = ∴
AD?CPa2a?a2?2?2.
2a, 2如图3-2中,当点P在线段CD上时,同法可证:DA?DC,设AD?a,则CD?AD?a,
PD = 2a, 2
图3-2
2a, 2ADa∴??2?2. PC2a?a2∴PC?a?【解析】解:(1)如图1中,延长CP交BD的延长线于E,设AB交EC于点O.
图1
∵?PAD??CAB?60o, ∴?CAP??BAD, ∵CA?BA,PA?DA, ∴△CAP?△BAD(SAS), ∴PC?BD,?ACP??ABD, ∵?AOC??BOE, ∴?BEO??CAO?60o, ∴
BD?1,线BD与直线CP相交所成的较小角的度数是60o, PC故答案为1,60o.
(2)如图2中,设BD交AC于点O,BD交PC于点E.
图2
∵?PAD??CAB?45o, ∴?PAC??DAB, ∵
ABAD??2, ACAPBDAB??2, PCAC∴△DAB:△PAC, ∴?PCA??DBA,
∵?EOC??AOB, ∴?CEO??OABB?45o,
∴直线BD与直线CP相交所成的小角的度数为45o.
(3)如图3-1中,当点D在线段PC上时,延长AD交BC的延长线于H.
图3-1
∵CE?EA,CF?FB, ∴EF∥AB,
∴?EFC??ABC?45o, ∵?PAO?45o, ∴?PAO??OFH, ∵?POA??FOH, ∴?H??APO, ∵?APC?90o,EA?EC, ∴PE?EA?EC, ∴?EPA??EAP??BAH, ∴?H??BAH, ∴BH?BA,
∵?ADP??BDC?45o, ∴?ADB?90o, ∴BD?AH,
∴?DBA??DBC?22.5o, ∵?ADB??ACB?90o,
相关推荐: