第一范文网 - 专业文章范例文档资料分享平台

第8章 多元函数微分法及其应用习题.

来源:用户分享 时间:2025/5/20 11:47:59 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

第八章 多元函数微分法及其应用

一、填空题

1.函数的定义域为 ;

2.设,则 ;

3.若对于任意给定的正数,总存在一个正数,当时,有

,则常数称为 ;

4.设函数,则 ;

5.函数的定义域为 ;

6. ;

7.函数的定义域为 ;

8.设,则 , ;

9. ;

10.设函数

,且当时,,则函数为 ,

11. ;

12.若,则 ; ;

13.若函数,则对的偏增量 ; ;

14.设,则 ;

15.设,则= ;

16.设,则 ;

17.若函数,则当时,函数的全增量= ;

全微分 ;

18.利用全微分近似计算公式,可得 ;

19.设,而,则 ; ;

20.设,其中具有一阶连续偏导数,则 ;

21.设,而,则关于的一阶全导数为 ;

22.已知,其中为任意可微函数,则 ;

23.设,则 ;

24.设为由方程所确定的函数,则 ;

25.设为由方程所确定的函数,则 ;

26.椭球面法线方程为 ;

在点处的切平面方程为 ;

27.当时,曲线在点处的切线方程为

;法平面方程为 ; 28.设旋转面

上某点

处的切平面为,若平面过曲线:

上对应于处的切线,则平面的方程为 ;

29.向量场在点处的梯度 ;它与在点处沿的方向导数

的关系式为 ;

30.已知场,则沿场的梯度方向的方向导数为 ;

31.设点的坐标为,,则 ;

在 方向上,方向导数有最大值;在 方向上,方向导数有最小值;

32.函数在驻点处, ;

; ; ;

由此可以断定函数在点处有 值;

33.函数在区域上的最大值为 ;最小值为 ;

34.函数在条件的极值为 ;

35.函数在条件及下的极值是 ;

36.抛物线到直线的最短距离是 ;

37.椭圆上的点 处的法线与原点的距离为最远;

38.函数的定义域为 ;

39.曲面在点处的切平面方程为 ;

40.设,则 ;

搜索更多关于: 第8章 多元函数微分法及其应用习题. 的文档
第8章 多元函数微分法及其应用习题..doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c2xul01ke942xzhu2kzn0175lm26kup009zq_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top