第一范文网 - 专业文章范例文档资料分享平台

四川省南充高中2018-2019年初升高冬令营数学试题 解析版

来源:用户分享 时间:2025/5/25 0:50:28 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

【分析】(1)因为已知抛物线顶点坐标,故可设顶点式,再把点B坐标代入即求得抛物线解析式.

(2)先由抛物线解析式求点A、D、E坐标,得到点D、E关于对称轴直线x=1对称,故有DG=EG.求直线AE解析式,进而得到其与y轴交点F,作F关于x轴的对称点F',则有FH=F'H.所以当点E、G、H、F'在同一直线上时,四边形DGHF周长最小.求EF'的长和直线EF'解析式,即求得点G、H的坐标. 【解答】解:(1)∵抛物线顶点为(1,4) ∴设顶点式y=a(x﹣1)+4 ∵点B(3,0)在抛物线上 ∴a(3﹣1)+4=0 解得:a=﹣1

∴抛物线解析式为y=﹣(x﹣1)+4=﹣x+2x+3

(2)x轴上存在点H使D,G,H,F四点所围成的四边形周长最小. 如图,作点F关于x轴对称的对称点F',连接EF' ∵x=0时,y=﹣x+2x+3=3 ∴D(0,3)

∵当y=0时,﹣x+2x+3=0 解得:x1=﹣1,x2=3 ∴A(﹣1,0)

∵点E在抛物线上且横坐标为2

22

2

2

2

2

∴yE=﹣2+2×2+3=3 ∴E(2,3)

∴点D、E关于对称轴对称 ∴DG=EG

设直线AE解析式为y=kx+e ∴

解得:

2

∴直线AE:y=x+1 ∴F(0,1)

∴F'(0,﹣1),HF=HF',DF=3﹣1=2 ∴C四边形DGHF=DF+DG+GH+FH=DF+EG+GH+F'H

∴当点E、G、H、F'在同一直线上时,C四边形DGHF=DF+EF'最小 ∵EF'=∴C四边形DGHF=2+2

设直线EF'解析式为y=mx﹣1 ∴2m﹣1=3 ∴m=2

∴直线EF':y=2x﹣1 当y=0时,解得x= ∴H(,0)

当x=1时,y=2﹣1=1 ∴G(1,1)

∴四边形DGHF周长最小值为2+2

,点G坐标为(1,1),点H坐标为(,0).

四川省南充高中2018-2019年初升高冬令营数学试题 解析版.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c2ycfd9nmzd1cf865breu5a66i6tmib010ul_6.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top