一.命名规则
学习建模过程,可以使用示例中的命名规则,设计标准模型参见标准模型创 建方法
二.确定构件使用的坐标系
构件坐标系是应该首先确定并记录的信息,以方便后续确定参考点坐标。 本例中坐标轴 Z 轴沿模型截面中心向上,X 轴为荷载施加方向,荷载沿 X 轴
正向施加。Y 轴与模型侧面垂直。如图所示。
三.材料定义
1 混凝土材料的定义
相关文献:http://127.0.0.1:2180/v6.13/books/usi/default.htm http://127.0.0.1:2180/v6.13/books/usb/default.htm?startat=pt05ch23s06abm39 .html#usb-mat-cconcretedamaged http://127.0.0.1:2180/v6.13/books/usi/default.htm?startat=pt03ch12s09s02.ht ml http://127.0.0.1:2180/texis/search/?query=concrete+damage+plasticity&submit .x=48&submit.y=6&group=bk&CDB=v6.13
1.1. 密度/Density
Mass Density=2.5e-9 tone/mm3(=2500kg/m3)
1.2. 弹性/Elastic
Machanical/Elasticity/Elastic
定义参数:
杨氏模量:
Young’s Modulus=34500 N/mm2; 泊松比:
Poisson’s Ratio=0.2
1.3. 塑性/Concrete Damage Plasticity
Mechanical/Plasticity/Concrete Damage Plasticity
Abaqus/CAE User’s Guide 12.9.2_Defining concrete damage plasticity **************************************************************
Dilation Angle
Dilation angle, , in the p–q plane. Enter the value in degrees.
Eccentricity
Flow potential eccentricity, . The eccentricity is a small positive number that defines the rate at which the hyperbolic flow potential approaches its asymptote. The default is .
fb0/fc0
, the ratio of initial equibiaxial compressive yield
stress to initial uniaxial compressive yield stress. The default value is
K
, the ratio of the second stress invariant on the tensile meridian, , to that on the compressive meridian, , at
initial yield for any given value of the pressure invariant p such
that the maximum principal stress is negative, satisfy the condition
Viscosity Parameter
Viscosity parameter, , used for the visco-plastic
. It must
.
. The default value is
regularization of the concrete constitutive equations in
Abaqus/Standard analyses. This parameter is ignored in Abaqus/Explicit. The default value is . (Units of .)
Temp Temperature. Field n
Predefined field variables.
*************************************************************** 定义参数:
扩散角:
Dilation Angle=38°; 偏心率: Eccentricity=0.1;(默认值) 双轴压缩屈服应力与单轴压缩屈服应力的比值:
fb0/fc0=1.16;(默认值) 拉伸子午面与压缩子午线的第二应力不变量之比: K(Kc)=2/3; 粘度系数:
Viscosity Parameter=默认的参数为 0.0s,选取值为 0.00001s 一般而言,粘性系数取值越小,分析越不容易收敛。这是经验问题。至
于是什么原因,这里还需要进一步的讨论。
1.3.1 受压本构参数/Compressive Behavior——C50 混凝土 Compression Harding(应变硬化):
受压应变—非弹性应变/Compression Stress-Inelastic Strain
compression hardening 22.68 0 32.4 0.000739885 18.5152 0.00282136 10.8008 0.00472398 7.40635 0.00650139 5.58672 0.00823314 4.4694
0.00994455 3.7184 0.0116453 3.18069 0.0133399 2.77743 0.0150306
Compression Damage
受压损伤因子—非弹性应变/Compression Damage factor-Inelastic Strain
COMPRESSION DAMAGE
0 0
0.01 0.00074 0.428544 0.002821 0.666642 0.004724 0.771409 0.006501 0.853722 0.008233 0.898389 0.009945
Tension Stiffening(应变强化):
受拉应变—非弹性应变/Tension Stress-InelasticStrain tension stiffening
3.168 0 2.64 3.36591E-05 1.26464 0.000183705
0.786735 0.000307738
0.584088 0.000423793
0.472094 0.00053722
0.400477 0.000649477
0.35037 0.00076111
0.313124 0.00087237
0.284214 0.000983389
0.0924472 0.00440455
Tension Damage:
受拉损伤因子—非弹性应变的关系/Tension Damage Factor—Inelastic Strain
tension damage
0 0 0.01 3.37E-05 0.52097 0.000184 0.701994 0.000308 0.778754 0.000424 0.861159 0.000537
2 钢筋材料的定义(HRB400) 2.1. 密度/Density
Density=7.8e-9 tone/mm3;
2.2. 弹性/Elastic
Young’s Modulus=210000 Poisson’s Ratio = 0.28*
//这里的钢筋的泊松比 Poisson’s Ratio 选择 0.28 一个典型值,钢筋的
相关推荐: