第一范文网 - 专业文章范例文档资料分享平台

中考数学专题 一次函数和反比例函数

来源:用户分享 时间:2025/5/28 20:18:24 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

学习好资料 欢迎下载

二.填空题(共15小题) 11.(2015?凉山州)已知函数y=2x

2a+b

+a+2b是正比例函数,则a=,b= ﹣.

考点: 正比例函数的定义;解二元一次方程组. 分析: 根据正比例函数的定义可得关于a和b的方程,解出即可. 解答: 解:根据题意可得:2a+b=1,a+2b=0,解得:a=,b=﹣. 故答案为:;﹣. 点评: 此题考查正比例函数的定义,解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1. 12.(2015?连云港)已知一个函数,当x>0时,函数值y随着x的增大而减小,请写出这个函数关系式y=﹣x+2 (写出一个即可).

考点: 一次函数的性质;反比例函数的性质;二次函数的性质. 专题: 开放型. 分析: 写出符合条件的函数关系式即可. 2解答: 解:函数关系式为:y=﹣x+2,y=,y=﹣x+1等; 故答案为:y=﹣x+2 点评: 本题考查的是函数的性质,此题属开放性题目,答案不唯一. 13.(2015?福建)在一次函数y=kx+3中,y的值随着x值的增大而增大,请你写出符合条件的k的一个值: 2 . 考点: 一次函数的性质. 专题: 开放型. 分析: 直接根据一次函数的性质进行解答即可. 解答: 解:当在一次函数y=kx+3中,y的值随着x值的增大而增大时,k>0,则符合条件的k的值可以是1,2,3,4,5… 故答案是:2. 点评: 本题考查了一次函数的性质.在直线y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小. 14.(2015?菏泽)直线y=﹣3x+5不经过的象限为 第三象限 . 考点: 一次函数图象与系数的关系. 学习好资料 欢迎下载

分析: k<0,一次函数经过二、四象限,b>0,一次函数经过第一象限,即可得到直线不经过的象限. 解答: 解:直线y=﹣3x+5经过第一、二、四象限,∴不经过第三象限, 故答案为:第三象限 点评: 本题考查了一次函数图象与系数的关系及一次函数图象的几何变换,难度不大.用到的知识点: 一次函数图象与系数的关系: ①k>0,b>0?y=kx+b的图象在一、二、三象限; ②k>0,b<0?y=kx+b的图象在一、三、四象限; ③k<0,b>0?y=kx+b的图象在一、二、四象限; ④k<0,b<0?y=kx+b的图象在二、三、四象限. 15.(2015?无锡)一次函数y=2x﹣6的图象与x轴的交点坐标为 (3,0) . 考点: 一次函数图象上点的坐标特征. 分析: 一次函数y=2x﹣6的图象与x轴的交点的纵坐标等于零,所以把y=0代入已知函数解析式即可求得相应的x的值. 解答: 解:令y=0得:2x﹣6=0,解得:x=3. 则函数与x轴的交点坐标是(3,0). 故答案是:(3,0). 点评: 本题考查了反比例函数图象上点的坐标特征,经过函数的某点一定在函数的图象上. 16.(2015?柳州)直线y=2x+1经过点(0,a),则a= 1 . 考点: 一次函数图象上点的坐标特征. 分析: 根据一次函数图象上的点的坐标特征,将点(0,a)代入直线方程,然后解关于a的方程即可. 解答: 解:∵直线y=2x+1经过点(0,a),∴a=2×0+1,∴a=1. 故答案为:1. 点评: 本题考查了一次函数图象上的点的坐标特征:经过函数的某点一定在函数的图象上,并且一定满足该函数的解析式方程. 17.(2015?六盘水)正方形A1B1C1O和A2B2C2C1按如图所示方式放置,点A1,A2在直线y=x+1上,点C1,C2在x轴上.已知A1点的坐标是(0,1),则点B2的坐标为 (3,2) .

学习好资料 欢迎下载

考点: 一次函数图象上点的坐标特征;正方形的性质. 专题: 规律型. 分析: 根据直线解析式先求出OA1=1,求得第一个正方形的边长,再求出第二个正方形的边长为2,即可求得B2的坐标. 解答: 解:∵直线y=x+1,当x=0时,y=1,当y=0时,x=﹣1, ∴OA1=1,OD=1, ∴∠ODA1=45°, ∴∠A2A1B1=45°, ∴A2B1=A1B1=1, ∴A2C1=C1C2=2, ∴OC2=OC1+C1C2=1+2=3, ∴B2(3,2). 故答案为(3,2). 点评: 本题考查了一次函数图象上点的坐标特征以及正方形的性质;求出第一个正方形、第二个正方形的边长是解决问题的关键. 18.(2015?滨州)把直线y=﹣x﹣1沿x轴向右平移2个单位,所得直线的函数解析式为y=﹣x+1 .

考点: 一次函数图象与几何变换. 分析: 直接根据“左加右减”的平移规律求解即可. 解答: 解:把直线y=﹣x﹣1沿x轴向右平移2个单位, 所得直线的函数解析式为y=﹣(x﹣2)﹣1,即y=﹣x+1. 故答案为y=﹣x+1. 点评: 本题考查了一次函数图象与几何变换.掌握“左加右减,上加下减”的平移规律是解题的关键. 学习好资料 欢迎下载

19.(2015?沈阳)如图1,在某个盛水容器内,有一个小水杯,小水杯内有部分水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水,小水杯内水的高度y(cm)和注水时间x(s)之间的关系满足如图2中的图象,则至少需要 5 s能把小水杯注满.

考点: 一次函数的应用. 分析: 一次函数的首先设解析式为:y=kx+b,然后利用待定系数法即可求得其解析式,再由y=11,即可求得答案. 解答: 解:设一次函数的首先设解析式为:y=kx+b, 将(0,1),(2,5)代入得: ,解得:∴解析式为:y=2x+1, 当y=11时,2x+1=11,解得:x=5, ∴至少需要5s能把小水杯注满. 故答案为:5. 点评: 此题考查了一次函数的实际应用问题.注意求得一次函数的解析式是关键. 20.(2015?大连)在平面直角坐标系中,点A,B的坐标分别为(m,3),(3m﹣1,3),若线段AB与直线y=2x+1相交,则m的取值范围为≤m≤1 . 考点: 两条直线相交或平行问题. 专题: 计算题. 分析: 先求出直线y=3与直线y=2x+1的交点为(1,3),再分类讨论:当点B在点A的右侧,则m≤1≤3m﹣1,当点B在点A的左侧,则3m﹣1≤1≤m,然后分别解关于m的不等式组即可. 解答: 解:当y=3时,2x+1=3,解得x=1, 所以直线y=3与直线y=2x+1的交点为(1,3), 当点B在点A的右侧,则m≤1≤3m﹣1,解得≤m≤1; , 学习好资料 欢迎下载

当点B在点A的左侧,则3m﹣1≤1≤m,无解, 所以m的取值范围为≤m≤1. 点评: 本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同. 21.(2015?永州)已知一次函数y=kx+b的图象经过两点A(0,1),B(2,0),则当x ≥2 时,y≤0.

考点: 待定系数法求一次函数解析式;一次函数的性质. 分析: 利用待定系数法把点A(0,﹣1),B(1,0)代入y=kx+b,可得关于k、b的方程组,再解出方程组可得k、b的值,进而得到函数解析式,再解不等式即可. 解答: 解:∵一次函数y=kx+b的图象经过两点A(0,1),B(2,0), ∴,解得: 这个一次函数的表达式为y=﹣x+1. 解不等式﹣x+1≤0, 解得x≥2. 故答案为x≥2. 点评: 本题考查了待定系数法求一次函数解析式,解不等式,把点的坐标代入函数解析式求出解析式是解题的关键. 22.(2015?湖州)已知y是x的一次函数,当x=3时,y=1;当x=﹣2时,y=﹣4,求这个一次函数的解析式.

考点: 待定系数法求一次函数解析式. 分析: 一次函数解析式为y=kx+b,将x与y的两对值代入求出k与b的值,即可确定出一次函数解析式. 解答: 解:设一次函数解析式为y=kx+b, 将x=3,y=1;x=﹣2,y=﹣4代入得:则一次函数解析式为y=x﹣2. 点评: 此题考查了待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键. ,解得:k=1,b=﹣2.

中考数学专题 一次函数和反比例函数.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c2zwjy4fqpf9pugm7qnnb9acj39qq6000eg4_2.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top