又CD?2BC?4AB?4 ?ABBC?BCCD?12 ??ABC??BCD 则?CAB??DBC
Q?ABD??DBC?90o ??ABD??CAB?90o ?AC?BD 又EB?BD?B ?AC?平面DBEF 又EF?平面DBEF ?AC?EF (Ⅱ)三棱锥A?CDF的体积:
V11118A?CDF?VF?ADC?3S?ADC?DF?3S?BDC?DF?3?2?BC?CD?DF?3
20.(1)因为椭圆E的一个焦点与抛物线C:x2?4y的焦点关于直线y?x对称,
所以椭圆E的右焦点为(1,0),所以c?1.
又椭圆E与坐标轴的一个交点坐标为(2,0),所以a?2,又b2?a2?c2?3,
所以椭圆E的标准方程为x24?y23?1.
(2)设直线l的方程为y?kx?2,k?0,则点P??2?k,0???,设A?x1,y1?,B?x2,y2? ?x2y2则点D?x???11,?y1?,联立直线l与椭圆E的方程有?4, ?3?y?kx?2得?3?4k2?x2?16kx?4?0,所以有??48?4k2?1??0,即k2?14 ??x?x?16k且?12?3?4k2,即直线BD的方程为
y?y1x?x1?y?y? ??x421x2?x11x2?3?4k2令\\y?0,得点Q的横坐标为xx1y2?x2y12kx1x2?2?xQ?y?1?x2?,
1?y2k?x1?x2??4k?32k代入得:xQ?816k2?4?3?4k2???24k?12?2k, 所以|OP|?|OQ|?x2P?xQ?k?2k?4,所以|OP|?|OQ|为定值4. 21.(1)f?x?的定义域为?0,???,f??x??2x?5?2x?2x2?5x?2?2x?1??x?2?x?x,f?x?的单调递增区间为??1??1??0,2??和?2,???,单调递减区间为??2,2??.
(2∵f??x??2x?a?22x2?ax?2x?x,f?x?有两个极值点
6
∴令g?x??2x?ax?2,则g?x?的零点为x1,x2,且
211?x1??x2. 3ea?0,x1x2?1∴a?4. 211111a根据根的分布,则g()?0且g() <0 即 2??a?2?0, 2?2??2?0.
3e93ee220∴a的取值范围是2e??a?
e3∴??a2?16>0, ∴a<-4 或a?4∵x1?x2?22.(1)l的普通方程为y?3?x?1?,C1的普通方程为x2?y2?1,
??13??y?3(x?1),?, 联立方程组?2,解得交点为A?1,0?,B??2??22x?y?1????1所以AB=(1?)2?(0?232)?1; 21?x?cos???1?32?cos?,sin??(2)曲线C2:?(?为参数).设所求的点为P?, ??22???y?3sin??2?则P到直线l的距离
d?33cos??sin??3223?116?cos(??)?3.
4?2236. ?2423.(1)把y?6?x代入原不等式得|x?5|?|x?2|?6,
当cos(q+)=-1时,d取得最大值p4?x?2?2?x?5?x?5 此不等式等价于?或?或?5?x?2?x?65?x?x?2?6x?5?x?2?6???分别解得:
131?113??x?2或2?x?5货5?x?,故原不等式解集为?,? 22?22?(2)|x?5|?|y?4|?|x?y?9|?3,当且仅当0?x?5,0?y?4时取等号, ∴|m?2|?3,故?1?m?5.
7
相关推荐: