(3)求两人相遇的时间.
23.(8分)在某海域,一艘海监船在P处检测到南偏西45°方向的B处有一艘不明船只,正沿正西方向航行,海监船立即沿南偏西60°方向以40海里/小时的速度去截获不明船只,经过1.5小时,刚好在A处截获不明船只,求不明船只的航行速度.(≈1.73,结果保留一位小数).
≈1.41,
24.(9分)已知:分别以△ABC的各边为边,在BC边的同侧作等边三角形ABE、等边三角形CBD和等边三角形ACF,连结DE,DF. (1)试说明四边形DEAF为平行四边形.
(2)当△ABC满足什么条件时,四边形DEAF为矩形?并说明理由;
(3)当△ABC满足什么条件时,四边形DEAF为菱形.直接写出答案 .
25.(8分)如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线y=﹣x2+bx+c经过点A、C,与AB交于点D.
(1)求抛物线的函数解析式;
(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S. ①求S关于m的函数表达式;
②当S最大时,在抛物线y=﹣x2+bx+c的对称轴l上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.
26.(8分)如图,在?OABC中,以O为圆心,OA为半径的圆与BC相切于点B,与OC相交于点D. (1)求
的度数.
(2)如图,点E在⊙O上,连结CE与⊙O交于点F,若EF=AB,求∠OCE的度数.
27.(9分)在△ABC中,∠ABC为锐角,点M为射线AB上一动点,连接CM,以点C为直角顶点,以CM为直角边在CM右侧作等腰直角三角形CMN,连接NB. (1)如图1,图2,若△ABC为等腰直角三角形,
问题初现:①当点M为线段AB上不与点A重合的一个动点,则线段BN,AM之间的位置关系是 ,数量关系是 ;
深入探究:②当点M在线段AB的延长线上时,判断线段BN,AM之间的位置关系和数量关系,并说明理由;
类比拓展:(2)如图3,∠ACB≠90°,若当点M为线段AB上不与点A重合的一个动点,
MP⊥CM交线段BN于点P,且∠CBA=45°,BC=
,当BM= 时,BP的最大值
为 .
参考答案
一.选择题 1.解:原式=x6, 故选:C.
2.解:∵9<13<16, ∴3<
<4,
即a=3,b=4, 则a+b=7, 故选:C.
3.解:﹣a中a的符号无法确定,故﹣a的符号无法确定. 故选:D.
4.解:∵AB=1.5,BC=0.9,AC=1.2,
∴AB2=1.52=2.25,BC2+AC2=0.92+1.22=2.25, ∴AB2=BC2+AC2, ∴∠ACB=90°, ∵CD是AB边上的高, ∴S△ABC=
1.5CD=1.2×0.9,
,
CD=0.72,
故选:A.
5.解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,又因为蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D的圆锥侧面展开图还原成圆锥后,位于母线OM上的点P应该能够与母线OM′上的点(P′)重合,而选项C还原后两个点不能够重合. 故选:D.
6.解:∵y=x2+bx+3的对称轴为直线x=1, ∴b=﹣2, ∴y=x2﹣2x+3,
∴一元二次方程x2+bx+3﹣t=0的实数根可以看做y=x2﹣2x+3与函数y=t的有交点,
相关推荐: