一.选择题
1-5 CABDD 6-10 BCCBA 11-12 CD 二.填空题 13. -2 14. 三.解答题
17.(1)由已知,bcosA??2c?a?cos???B? 即sinBcosA???2sinC?sinA?cosB 即sin?A?B???2sinCcosB 则sinC??2sinCcosB
11 15. 5 16. 2812?; ?cosB??,即B?23(2)f?x??2cos2x?cos2xcos2?2? ?sin2xsin33?33cos2x?sin2x 22????3sin?2x??
3??由x??0,???4?????知2x???,? ?3?33??2??4??3?3当2x??,即x?是,f?x??3??? ????2?3322???所以函数f?x?在区间?0,3????上的最小值为,此时. ?x??222??18.(1)由PC?平面ABCD,AC?平面ABCD,?AC?PC
?AB?2,AD?CD?1,?AC?BC?2
于是AC2?BC2?AB2,有AC?BC 又BC?PC?C
?AC?平面PBC,AC?平面EAC
?平面平面EAC?PBC;
(2)以C为原点,建立如图所示空间直角坐标系. 则C?0,0,0?,A?1,1,0?,B?1,?1,0?
设n??x,y,z?为面EAC的法向量,则n?CA?n?CE?0
即??x?y?0,取x?a,得y??a,z??2,则n??a,?a,?2?
x?y?az?0?m?nm?n?aa2?2?6,则a?2 3依题意有cos?m,n??于是n??2,?2,?2?
设直线PA与平面EAC所成角为?,则sin??cos?PA,n??PA?nPA?n?2 3则直线PA与平面EAC所成角的正弦值为2. 319.(1)该考场考生“科目一”科目中D等级学生所占频率为 1-0.2-0.375-0.25-0.075=0.1 所以该考场人数为4?0.1?40(人)
于是“科目一”考试成绩为A的人数为40?0.075?3
“科目二”考试成绩为A的人数为40??1?0.375?0.375?0.15?0.025??40?0.075?3(人); (2)因为两科考试中,共有6人次得分等级为A,又恰有2人的两科成绩等级均为A,所以还有2人只有一个科目得分为A,即至少有一科成绩为A的学生共有4人. 随机变量X的可能取值为0,1,2
2112C2C2?C2C21421 P?X?0??2?,P?X?1????,PX?2????22C46C463C46所以X的分布列为
X P
0 1 2
1 62 31 6121X的数学期望E?X??0??1??2??1
63620.(1)设椭圆C的半焦距为c?c?0? 由F1为线段F2Q中点,AQ?AF2
所以A,Q,F2三点圆的圆心为F1??c,0?,半径为2c?a 又因为该圆与直线l相切,所以
?c?3?2c?c?1 2x2y2??1; 所以a?4,b?3,故所求椭圆方程为4322x2y2??1 (2)若l1与x轴不垂直,可设其方程为y?kx?2,代入椭圆方程43可得3?4k2x2?16kx?4?0,由??0,得k2???1 4
设G?x1,y1?,H?x2,y2?,根据已知,有x1??x2
?16k?x?x?1??x???2??123?4k2于是?
1?xx??x2?12?3?4k2?消去x221????,可得
2?64k2 ?3?4k264k2641因为k?,所以???4,16? 233?4k44?2k?1???即有
?2???1??2??4,16?,有??1???2,14?
若l1垂直于x轴,此时??故??
2?31,???14
?2?31
?的取值范围是?2,14?.
21.(1)当a?0,f?x??ln?x?b?,f'?x??令f'1 x?b?x??1?x?1?b,于是切点坐标为?1?b,0?
2将切点坐标?1?b,0?代入切线方程,有0?1?b+1?b?2; (2)根据已知,有x??1时,x?ax?ln?x?1??0恒成立 即ax?x?ln?x?1??0恒成立
2设F?x??ax?x?ln?x?1??x??1?,则原命题等价于F?x?max?0恒成立
2x?2ax??2a?1??1??
F?x??2ax?1??x?1x?1'若a?0,令F'?x??0,有x?0??x??'1?2a1???1???1舍去?,此时 2a2a?'当?1?x?0,F?x??0,F?x?是增函数;当x?0,F于是F?x?max?F?0??0,满足条件; 若a?0,F'?x??'?x??0,F?x?是减函数
?x 1?x'当?1?x?0,F?x??0,F?x?是增函数;当x?0,F于是F?x?max?F?0??0,满足条件; 若a?0,F??x??0,F?x?是减函数
?1??1??ln???1??ln1?0,不满足条件 ?a??a?综上所述,实数a的取值范围是???,0?.
22.(1)连接AC,DE,由已知,?ADB??AEB?180? 所以A,D,B,E四点共圆 于是?ABD??AED
因为直线PA与圆O切于点A,所以?PAC??ABC,则有?PAC??AED 于是ACED,所以
PAPC?,即PA?PD?PC?PE PEPD(2)因为A,D,B,E四点共圆,有?ABD??AED 由ACED,有?ADE??CAD
因为?ABD,?CAD均与?DAB互余,即?ABD??CAD 所以?ABE??ABD 又AD?BD,AE?BE 即AD?AE.
23.(1)因为圆C的极坐标方程为??4cos???????? 3??2?4?cos???222?????1?3 ?4?cos??sin??????3?2?2?又??x?y,x??cos?,y??sin? 所以x2?y2?2x?23y
即圆C的直角坐标方程是x2?y2?2x?23y?0 (2)圆C的方程可化为?x?1??y?32??2?4,圆心是1,3,半径是2
???3x?1?t??2,代入z?3x?y,得z?23?t 设z?3x?y,将??y?3?1t??2因为直线l过圆心1,3,且圆的半径是2, 故点P对应的参数t满足?2?t?2 于是23?2?23?t?23?2
即3x?y的最大值是23?2,最小值是23?2. 24.(1)因为f?x?2??m?x
所以f?x?2??0?x?m??m?x?m 根据已知,m?3 (2)解法一:由(1)知
??111???1,又a,b,c皆为正数 2a3b4c11??1?2a?3b?4c??2a?3b?4c?????
?2a3b4c?
相关推荐: