11.【解析】证明:a?a?a2?3a3?3a,
同理b?b?b2?3b3?3b,c?c?c2?3c3?3c,
三式相加:2(a?b?c)?a2?b2?c2?3(a?b?c)?9?(a?b?c)2, ∴2(a?b?c)?(a?b?c)2?a2?b2?c2?2(ab?bc?ac), ∴ab?bc?ac?a?b?c;
又(a?b?c)2?(a?b?c)(1?1?1)?9,∴a?b?c?3, 综上可得ab?bc?ac?a?b?c?3.
12.【解析】(1)证明:∵x,y均为正数,故总存在实数m,n使得x?a,y?am333n ?a?1?,
xamm?n∴f()?f(n)?f(a)?(m?n)f(a)?m?n,
ya又f(x)?f(y)?f(am)?f(an)?mf(a)?nf(a)?m?n, ∴f??x???f?x??f?y?. ?y?x1x(a?1,??0), ?1,故可令1?a?,
x2x2(2)证明:设x1,x2??0,???,且x1?x2,则
则由(1)知f?x1??f?x2??f??x1???f(a)??f(a)???0, ??x2?即f?x1??f?x2?.∴f(x)在?0,???上单调递增.
t2?4)?f(a),又f(x)在?0,???上单调递增, (3)解:∵f(a)?1故原不等式化为f(tt2?444t2?4?a对于t?0恒成.∵?t??2t??4.∴(当且仅当t?2时“=”成立). tttt∴a?4,又a??1,???,∴a??1,4?. 13.【解析】(1)由an?1?12n?1an?n?1(n?N*)知:2n?1an?1?2nan?2n?1(n?N*), 22令bn?2nan,则b1?1且bn?1?bn?2n?1(n?N*).
由bn?(bn?bn?1)?(bn?1?bn?2)?????(b2?b1)?b1?(2n?1)?????3?1?n2,
n2得an?n.
212223242(n?1)2n2?n, (2)由题意知:Sn?1?2?3?4????????n?1222222112223242(n?1)2n2?n?1, 所以Sn?2?3?4?5????????222222n2(2n?1)n2113579?n?1, 两式相减得Sn??2?3?4?5????????n2222222213579(2n?1)?2?3?4?5????????, 222222n2n?3再利用错位相减法求得Tn?3?. n2设Tn?2n?3n2n2?4n?6所以Sn?6?n?1?n?6?. n22214.【解析】(1)证明:设AB?c,BC?a,AC?b. 在?ABC中,AD为?BAC的平分线,
BDABBDABBDc???,∴,∴, DCACBD?DCAB?ACab?caca∴BD?,又BM?,
b?c2∴
BD?BMa2由BP?BA?BD?BM得BP?, ?AB2(b?c)a2由CQ?CA?CM?CD得CQ?,因此CQ?BP.
2(b?c)(2)证明:连接BQ、PC,并设X、Y分别为BQ、PC的中点,易证XN平行且等于
MY,所以四边形NXMY为平行四边形,由CQ?BP知NX?NY,所以四边形NXMY为菱形.从而MN平分?XNY,又AD平分?BAC,AB//NX,AC//NY,所以
MN//AD.
相关推荐: