第一范文网 - 专业文章范例文档资料分享平台

2015数学科精编模拟题(体育)

来源:用户分享 时间:2025/8/26 11:44:22 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

2015年数学精编模拟题(理科)

一、选择题: 1. 复数

2i等于 1?iA.1?i B. 1?i C. ?1?i D.?1?i 2. 已知全集U??1,2,3,4,5?,???1,2,5?,???2,3,5?,则eU???等于 A.?2,3? B.?2,5? C.?3? D.?2,3,5? 3.已知sin??cos(???)?A.

??1,则sin2?的值为 38184 B. C. ? D. 99994.已知命题p:若a是非零向量,?是非零实数,则a与??a方向相反;命题q:|??a|?|?|?a.则下列命题为真命题的是

A.p?q B.p?q C. (?p)?q D. p?(?q)

5.从编号为0,1,2,?,79的80件产品中,采用系统抽样的方法抽取容量为5的一个样本,若编号为42的产品在样本中,则该样本中产品的最小编号为

A.8 B.10 C. 12 D. 16 6. 图1是某几何体的三视图(单位:cm),正视图是等腰梯形,俯视图中的

曲线是两个同心的半圆,侧视图是直角梯形.则该几何体的体积等于 A. 28 πcm B. 14πcm C. 7πcm D. 56πcm

?x??1?5,(x?0)7.函数f(x)??x,则下列结论正确的是 图1

??5?1.(x?0)3333

A.函数f(x)在其定义域内为增函数且是奇函数B. 函数f(x)在其定义域内为增函数且是偶函数 C. 函数f(x)在其定义域内为减函数且是奇函数D. 函数f(x)在其定义域内为将函数且是偶函数 8.设非空集合M同时满足下列两个条件: ①M??1,2,3,??????,n?1?;

②若a?M,则n?a?M,(n?2,n?N).则下列结论正确的是 A. 若n为奇数,则集合M的个数为2n?12n2?; B. 若n为奇数,则集合M的个数为2n?12n2.

C. 若n为偶数,则集合M的个数为2; D. 若n为偶数,则集合M的个数为2?1; 二、填空题:

??????9. 已知点A(?1,5)和向量a=(2,3),若AB?3a,则点B的坐标为 .

10.设随机变量?服从正态分布N(2,9),若P(??c?1)?P(??c?1),则c? .

1

11. 函数f(x)?12xe?3x在x? 处取得最小值. 2x2y2??1(m是常数)表示曲线C,给出下列命题: 12. 已知方程

4?mm?1 ①曲线C不可能为圆;②曲线C不可能为抛物线;

③若曲线C为双曲线,则m?1或m?4;④若曲线C为焦点在x轴上的椭圆,则1?m?其中真命题的编号为 .

5. 2?2x?y?2?13.设实数x,y 满足条件?y?x?1,若|ax?y|的最小值为0,则实数a的最小值与最大值的和等

?x?y?2?于 .

(二)选做题(14-15题,考生只能从中选做一题)

??x?t?1,14. (t为参数)和(极坐标与参数方程选讲选做题)已知两曲线的参数方程分别为???y?1?2t.?x?sin??cos?,(?为参数),则它们的交点坐标为 . ??y?1?sin2?.15. (几何证明选做题)如图2,从圆O外一点A引圆的切线AD和割线ABC,已知

OBADCAD?23,BC=2AB,圆心O到AC的距离为5,则点A与圆O上的点的最

短距离为 . 图2 三.解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.

sinA?2sinB.16. (本小题满分12分)在△ABC中,内角A、B、C的对边分别为a、b、c,已知a?b?2,c?4,

(1)求△ABC的面积; (2)求tan(A?B). 变式1:

在△ABC中,内角A、B、C的对边分别为a、b、c,已知a?b?c?(1)求cosA; (2)求cos(2A?B). 变式2:

2221bc,sinA?2sinB. 2??在△ABC中,内角A、B、C的对边分别为a、b、c,已知向量m?(sinA,sinB),

???????????cn?(1,?2),p?(?,a?b),且m?n,n//p,|p|?5.

4(1)求△ABC的面积; (2)求cos(A?B).

17.(本小题满分12分)如图所示,某班一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,其中,频率分布直方图的分组区间分别为[50,60),[60,70),[70,80),[80,90),[90,100),据此解答如下问题.

2

(1)求全班人数及分数在[80,100]之间的频率;

(2)现从分数在[80,100]之间的试卷中任取3份分析学生失分情况,设抽取的试卷分数在[90,100]的份数为 X ,求 X 的分布列和数学望期.

18. (本小题满分14分)

已知如图1所示的四边形ABCD中,DA⊥AB,点E为 AD中点,AD=EC=2AB=2BC=2,现将四边形沿CE翻折, 使得平面CDE与平面ABCE所成的二面角为?(0????3),

连结DA,DB,BE得到如图2所示的四棱锥D-ABCE.

(1)证明:平面DAE⊥平面ABCE;

(2)记四棱锥D-ABCE的体积为V,当V取得最大值时,求DB与平面ABCE所成角的正弦值.

变式1:已知如图1所示的四边形ABCD中,DA⊥AB, 点E为AD中点,AD=EC=2AB=2BC=2,现将四 边形沿CE翻折,使得平面CDE⊥平面ABCE,连结 DA,DB,BE得到如图2所示的四棱锥D-ABCE. (1)证明:平面BDE⊥平面BDC;

????1????(2)已知点F为侧棱DC上的点,若DF?DC,

5求二面角F-BE-D的余弦值.

备选:已知侧棱与底面垂直的三棱柱ABC?A1B1C1的底面为正三角形,

D为边AC的中点.

(1)证明:AB1//平面BDC1; (2)当

AA1取何值时,AB1?BC1? AB(3)当AB1?BC1时,求平面A1C与平面A1CB所成锐二面角的余弦值.

19.(本小题满分14分)已知点F,F2(1,0),?F2:(x?1)2?y2?1,一动圆在y轴右侧与y轴相切,同时1(?10),与

3

?F2相外切,设动圆的圆心轨迹为曲线T.

(1)求曲线T的方程;

(2)设C、D是曲线T上位于x轴上方的两点,分别过C、D作曲线T的切线,两条切线交于点P,且分别与x轴交于点B、A,AC与BD交于点E,作EF⊥x轴于点F,试探究P、E、F三点是否共线?

变式1:

22已知点F(?10),,F(1,0),?F:(x?1)?y?1,一动圆在y轴右侧与y轴相切,同时与?F2相外切,设动122圆的圆心轨迹为曲线C,曲线E是以F1、F2为焦点的椭圆. (1)求曲线C的方程;

(2)记曲线C与曲线E在第一象限内的交点为P,且|PF1|?7,求曲线E的标准方程; 3(3)定义:连结椭圆上任意两点所成的线段叫做椭圆的弦.过椭圆E的右焦点F2作两条互相垂直的弦AB、GH,设AB、GH的中点分别为M、N,试探究直线MN是否过定点?若过定点,求出该定点的坐标,若不过定点,说明理由.

20.(本小题满分14分)已知函数f(x)?1?kx?b,其中k,b为实数且k?0.

|x?2|(1)当k?0时,根据定义证明函数y?f(x)在(??,?2)上单调递增; (2)若k为常数,函数y?f(x)有三个不同的零点,求b的取值范围.

20.备选1:已知数列{an}的首项a1?4,前n项和为Sn,且Sn?1?3Sn?2n?4?0(n?N?). (1)求数列{an}的通项公式;

(2)设函数f(x)?anx?an?1x2???a1xn,f'(x)是函数f(x)的导函数,令bn?f'(1),试探究数列{bn}是否存在最小值项?若存在,求出该项,若不存在,说明理由.

x3+3x?21.(本小题满分14分)已知函数f(x)?2,数列?xn?满足x1?2,xn?1?f(xn) (n?N),记

3x?1x?1yn?log3(n?1).

xn?1?1 (1)求y1的值;(2)求数列{yn}的通项公式; (3)证明:对?n?N,(1??111)(1?)?(1?)?2. y1y2ynx2?(a?1)x,a?R. 21.备选:已知函数f(x)?alnx?2(1)当a??1时,求函数 f (x)的最小值; (2)当a?1时,讨论函数 f (x)的零点个数.

4

搜索更多关于: 2015数学科精编模拟题(体育) 的文档
2015数学科精编模拟题(体育).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c324pk8x409423gj8gje700kc52051d00keo_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top