第一范文网 - 专业文章范例文档资料分享平台

[走向高考]2016届高三数学一轮阶段性测试题4 三角函数、三角恒等变形、解三角形(含解析)新人教A版

来源:用户分享 时间:2025/12/13 13:42:44 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

阶段性测试题四(三角函数、三角恒等变形、解三角形)

本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。满分150分。考试时间120分钟。 第Ⅰ卷(选择题 共60分)

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.(2015·娄底市名校联考)已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x上,则cos2θ=( ) 4

A.-5 34C.5 D.5 [答案] B

[解析] 解法1:在角θ终边上任取一点P(a,2a)(a≠0),则r2=|OP|2=a2+(2a)2=5a2, a2123

∴cos2θ=5a2=5,∴cos2θ=2cos2θ-1=5-1=-5. cos2θ-sin2θ1-tan2θ2a

解法2:tanθ=a=2,cos2θ==

cos2θ+sin2θ1+tan2θ3=-5.

2.(2015·山东滕州一中月考)化简 π11πcosπ+αcos2+αcos2-α

3B.-5 的结果是( ) 9π

cosπ-αsin-π-αsin2+αA.-1 C.tanα [答案] C

B.1

D.-tanα

-cosα·-sinα·-sinα

[解析] 原式==tanα.

-cosα·sinα·cosα

π

3.(文)(2014·河南省实验中学期中)函数y=sin(2x+3)图象的对称轴方程可能是( ) ππA.x=-6 B.x=-12 πC.x=6 [答案] D

ππkππ

[解析] 由2x+3=kπ+2(k∈Z)得,x=2+12(k∈Z),∴选D.

π

(理)(2015·沈阳市东北育才学校一模)下列函数中,最小正周期为π,且图象关于直线x=3对称的是( ) πA.y=sin(2x+6)

π

B.y=sin(2x+3) π

D.x=12

- 1 -

π

C.y=sin(2x-3) [答案] D

π

D.y=sin(2x-6) π

[解析] 把x=3代入解析式,函数应取到最值,经检验D符合.

4.(文)(2015·河南八校联考)将函数y=3cosx+sinx(x∈R)的图象向左平移m(m>0)个长度单位后,所得到的图象关于原点对称,则m的最小值是( ) ππA.12 B.6 π2πC.3 D.3 [答案] D

ππ

[解析] y=3cosx+sinx=2sin(x+3),向左平移m个单位得到y=2sin(x+m+3),此函数为奇π2π函数,∴m+3=kπ,k∈Z,∵m>0,∴m的最小值为3. π

(理)(2014·杭州七校联考)将函数y=sin2x的图象向左平移4个单位,再向上平移1个单位,所得图象的函数解析式是( ) A.y=cos2x B.y=2cos2x π

C.y=1+sin(2x+4) D.y=2sin2x [答案] B [解析] y=sin2x

π左移个单位

――→y=sin2(x+4)

π向上平移1个单位

――→y=sin(2x+2)+1,

π

∵y=sin(2x+2)+1=cos2x+1=2cos2x,∴选B.

5.(2014·河北冀州中学期中)设扇形的周长为6,面积为2,则扇形的圆心角是(弧度)( ) A.1 B.4 C.π D.1或4 [答案] D

[解析] 设扇形半径为R,圆心角为α,则 2R+Rα=6 1???1 R2α=2 2??2

44

由(2)得Rα=R,代入(1)得2R+R=6,解之得R=1或2,当R=1时,α=4,当R=2时,α=1.∴选D.

31

6.(2014·湖北省八校联考)已知α、β为锐角,cosα=5,tan(α-β)=-3,则tanβ的值为( )

- 2 -

1

A.3 B.3 913C.13 D.9 [答案] B

344

[解析] ∵cosα=5,α为锐角,∴sinα=5,tanα=3, tanα-tanα-β

∴tanβ=tan*α-(α-β)+= 1+tanα·tanα-β41--33=41=3. 1+3×-3

7.(文)(2015·江西省三县联考)在△ABC中,若sinA∶sinB∶sinC=3∶4∶5,则cosA的值为( ) 34A.5 B.5 C.0 D.1 [答案] B

[解析] 由正弦定理得a∶b∶c=sinA∶sinB∶sinC=3∶4∶5, ∴设a=3k,b=4k,c=5k(k>0),

b2+c2-a216k2+25k2-9k24

∴cosA===5. 2bc2×4k×5k

(理)(2015·山西忻州四校联考)在△ABC中,角A、B、C所对的边分别为a、b、c,且BC边上的3cb

高为6a,则b+c的最大值是( ) A.8 B.6 C.32 [答案] D

D.4

c2+b2-a2bcc2+b2

[解析] c+b=bc,这个形式很容易联想到余弦定理:cosA=,① 2bc131

而条件中的“高”容易联想到面积,2a·6a=2bcsinA,即a2=23bcsinA,② 将②代入①得:b2+c2=2bc(cosA+3sinA), bcππ

∴c+b=2(cosA+3sinA)=4sin(A+6),当A=3时取得最大值4,故选D.

8.(文)(2014·甘肃省金昌市二中期中)在△ABC中,已知2sinAcosB=sinC,那么△ABC一定是( )

A.直角三角形 B.等腰三角形 C.等腰直角三角形 D.正三角形 [答案] B

[解析] ∵2sinAcosB=sinC=sin(A+B) =sinAcosB+cosAsinB,

∴sin(A-B)=0,∵0

- 3 -

列,则△ABC一定是( )

A.钝角三角形 B.直角三角形

C.等腰直角三角形 D.等边三角形 [答案] D

π2π

[解析] ∵A、B、C成等差数列,∴B=3,A+C=3, 3

又b2=ac,∴sin2B=sinAsinC,即sinAsinC=4, 2π3π

∴sinAsin(3-A)=4,∴sin(2A-6)=1, πππ

∵0

∴△ABC为等边三角形. 9.(2014·山东省德州市期中)已知△ABC中三内角A、B、C的对边分别是a、b、c,若B=30°,b=1,c=3,则△ABC的面积为( ) 33A.2 B.4 33C.2或4 [答案] C

3

[解析] ∵3sin30°=2<1<3,∴△ABC有两解. 133

由sin30°=sinC得,sinC=2,∴C=60°或120°, 3

当C=60°时,A=90°,S△ABC=2;

13

当C=120°时,A=30°,S△ABC=2×3×1×sin30°=4,故选C.

10.(文)(2015·湖北百所重点中学联考)已知α为第三象限角,且sinα+cosα=2m,sin2α=m2,则m的值为( ) 33A.3 B.-3 1C.-3

2

D.-3 3

D.2或3

[答案] B

[解析] 把sinα+cosα=2m两边平方可得1+sin2α=4m2,又sin2α=m2,∴3m2=1,解得m33=±3,又α为第三象限角,∴m=-3. A-B

(理)(2014·文登市期中)在△ABC中,角A、B、C的对边分别为a、b、c,且2cos22cosB-sin(A4

-B)sinB+cos(A+C)=-5,则cosA=( ) 4A.-5

4B.5 - 4 -

[走向高考]2016届高三数学一轮阶段性测试题4 三角函数、三角恒等变形、解三角形(含解析)新人教A版.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c32gvk5vlds6i8st1cms2_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top