mA g -FT =mA a (1) F′T1 -Ff =mB a′ (2) F′T -2FT1 =0 (3)
考虑到mA =mB =m, FT =F′T , FT1 =F′T1 ,a′=2a,可联立解得物体与桌面的摩擦力
Ff?mg??m?4m?a?7.2N
2
讨论 动力学问题的一般解题步骤可分为:(1) 分析题意,确定研究对象,分析受力,选定坐标;(2) 根据物理的定理和定律列出原始方程组;(3) 解方程组,得出文字结果;(4) 核对量纲,再代入数据,计算出结果来.
2 -9 质量为m′的长平板A 以速度v′在光滑平面上作直线运动,现将质量为m 的木块B 轻轻平稳地放在长平板上,板与木块之间的动摩擦因数为μ,求木块在长平板上滑行多远才能与板取得共同速度?
分析 当木块B 平稳地轻轻放至运动着的平板A 上时,木块的初速度可视为零,由于它与平板之间速度的差异而存在滑动摩擦力,该力将改变它们的运动状态.根据牛顿定律可得到它们各自相对地面的加速度.换以平板为参考系来分析,此时,木块以初速度-v′(与平板运动速率大小相等、方向相反)作匀减速运动,其加速度为相对加速度,按运动学公式即可解得.
该题也可应用第三章所讲述的系统的动能定理来解.将平板与木块作为系统,该系统的动能由平板原有的动能变为木块和平板一起运动的动能,而它们的共同速度可根据动量定理求得.又因为系统内只有摩擦力作功,根据系统的动能定理,摩擦力的功应等于系统动能的增
量.木块相对平板移动的距离即可求出.
解1 以地面为参考系,在摩擦力Ff =μmg 的作用下,根据牛顿定律分别对木块、平板列出动力学方程
Ff =μmg =ma1 F′f =-Ff =m′a2
a1 和a2 分别是木块和木板相对地面参考系的加速度.若以木板为参考系,木块相对平板的加速度a =a1 +a2 ,木块相对平板以初速度- v′作匀减速运动直至最终停止.由运动学规律有
- v′2 =2as
由上述各式可得木块相对于平板所移动的距离为
m?v?2 s?2μg?m??m?解2 以木块和平板为系统,它们之间一对摩擦力作的总功为
W =Ff (s +l) -Ffl =μmgs
式中l 为平板相对地面移动的距离.
由于系统在水平方向上不受外力,当木块放至平板上时,根据动量守恒定律,有
m′v′=(m′+m) v″
由系统的动能定理,有
μmgs?由上述各式可得
11m?v?2??m??m?v??2 22m?v?2 s?2μg?m??m?2 -10 如图(a)所示,在一只半径为R 的半球形碗内,有一粒质量为m 的小钢球,当小球以角速度ω在水平面内沿碗内壁作匀速圆周运动时,它距碗底有多高?
分析 维持钢球在水平面内作匀角速度转动时,必须使钢球受到一与向心加速度相对应的力(向心力),而该力是由碗内壁对球的支持力FN 的分力来提供的,由于支持力FN 始终垂直于碗内壁,所以支持力的大小和方向是随ω而变的.取图示Oxy 坐标,列出动力学方程,即可求解钢球距碗底的高度.
解 取钢球为隔离体,其受力分析如图(b)所示.在图示坐标中列动力学方程
FNsinθ?man?mRω2sinθ (1)
FNcosθ?mg (2)
?R?h? (3)
且有 cosθ?R由上述各式可解得钢球距碗底的高度为
h?R?可见,h 随ω的变化而变化.
g ω22 -11 火车转弯时需要较大的向心力,如果两条铁轨都在同一水平面内(内轨、外轨等高),这个向心力只能由外轨提供,也就是说外轨会受到车轮对它很大的向外侧压力,这是很危险的.因此,对应于火车的速率及转弯处的曲率半径,必须使外轨适当地高出内轨,称为外轨超高.现有一质量为m 的火车,以速率v 沿半径为R 的圆弧轨道转弯,已知路面倾角为θ,试求:(1) 在此条件下,火车速率v0 为多大时,才能使车轮对铁轨内外轨的侧压力均为零? (2) 如果火车的速率v≠v0 ,则车轮对铁轨的侧压力为多少?
分析 如题所述,外轨超高的目的欲使火车转弯的所需向心力仅由轨道支持力的水平分量FNsinθ 提供(式中θ 角为路面倾角).从而不会对内外轨产生挤压.与其对应的是火车转弯时必须以规定的速率v0行驶.当火车行驶速率v≠v0 时,则会产生两种情况:如图所示,如v>v0 时,外轨将会对车轮产生斜向内的侧压力F1 ,以补偿原向心力的不足,如v<v0时,则内轨对车轮产生斜向外的侧压力F2 ,以抵消多余的向心力,无论哪种情况火车都将对外轨或内轨产生挤压.由此可知,铁路部门为什么会在每个铁轨的转弯处规定时速,从而确保行车安全.
解 (1) 以火车为研究对象,建立如图所示坐标系.据分析,由牛顿定律有
v2FNsinθ?m (1)
RFNcosθ?mg?0 (2)
解(1)(2)两式可得火车转弯时规定速率为
v0?gRtanθ
(2) 当v>v0 时,根据分析有
v2FNsinθ?F1cosθ?m (3)
RFNcosθ?F1sinθ?mg?0 (4)
解(3)(4)两式,可得外轨侧压力为
?v2??F1?m?cosθ?gsinθ?R?
??当v<v0 时,根据分析有
v2FNsinθ?F2cosθ?m (5)
RFNcosθ?F2sinθ?mg?0 (6)
解(5)(6)两式,可得内轨侧压力为
??v2? F2?m?gsinθ?cosθ??R??
相关推荐: