第一范文网 - 专业文章范例文档资料分享平台

江苏省泰州市姜堰区2020年中考数学一模试卷(含解析)

来源:用户分享 时间:2025/5/31 11:58:20 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

∵沿AE翻折△ABE,点B落在点F处, ∴∠BAE=∠FAE=45°,AB=AF,BE=EF, ∠AFE=∠B=90°, ∴四边形ABEF是正方形, ∴BE=AB=10, ∵CE=m, ∴BE=m=10, ∴m=

综上所述,当点F落在矩形ABCD的边上时,m的值为

(3)如图4﹣1中,取AB,CD的中点M,N,连接NM,作线段MN关于直线AD的对称线段M′N′.

观察图象可知当点F落在线段MN上或线段M′N′上时,S△ADF=S矩形ABCD, 如图4﹣2中,当点F落在M′N′上时,过点F作FH⊥AD于H.

在Rt△AFH中,∵AF=AB=10.FH=A′M=AM=BM=5, ∴AF=2FH, ∴∠FAH=30°, ∵∠AFE=∠B=90°,

21

∴AJF=60°, ∵AD∥BC,

∴∠JAE∠AEB=∠AEJ, ∵∠AJF=∠JAE+∠AEJ=60°, ∴∠AEB=∠AEJ=30°, ∴BE=

AB=10,

时,在BC边上存在两个不同位置的点E,使得S△ADF=S矩形

观察图象可知,当m≥10

ABCD.

,﹣

)逆

26.如图1,点P(m,n)在一次函数y=﹣x的图象上,将点P绕点A(﹣时针旋转45°,旋转后的对应点为P′. (1)当m=0时,求点P′的坐标;

(2)试说明:不论m为何值,点P′的纵坐标始终不变;

(3)如图2,过点P作x轴的垂线交直线AP′于点B,若直线PB与二次函数y=﹣x2﹣

x+2的图象交于点Q,当m>0时,试判断点B是否一定在点Q的上方,请说明理由.

【分析】(1)当m=0时,点P(0,0),而点A的坐标为(﹣直线y=x上且PA=2,进而求解; (2)点A的坐标为(﹣求解;

(3)求出直线AB的函数关系式为:y=解.

解:(1)当m=0时,点P(0,0), ∵点A的坐标为(﹣

,﹣

), ,﹣

,﹣),则点A在

),故点A在直线y=x上,则点P′A∥y轴,即可

x+﹣,再求出点P、Q的坐标,即可求

22

故点A在直线y=x上且PA=2, ∵点P绕点A(﹣,﹣

)逆时针旋转45°,

∴P′A∥y轴, 故;

(2)∵点A的坐标为(﹣

,﹣

),

故点A在直线y=x上,则点P′A∥y轴, ∵P′A=PA=2, ∴点P 的纵坐标均为;

(3)点 B一定在点Q的上方,理由: 根据条件首先求出P'的坐标,

设直线AB的表达式为:y=kx+b,

将点A、P′的坐标代入上式得:,解得,从而求出直线AB的函数关系式为:y=x+﹣,

当x=m时,y=,即点B(m,),

当x=m时,y2Q=﹣m﹣m+2,即点Q(m,﹣m2﹣m+2), ∴yB﹣yQ=﹣(﹣m2﹣m+2)=m2+,

∵m>0 ∴

∴yB>yQ

∴点 B一定在点Q的上方. 23

江苏省泰州市姜堰区2020年中考数学一模试卷(含解析).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c335qf0oinz3jk4h7sglc72h8v7sa9700vk5_6.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top