复变函数与积分变换(修订版)课后答案(复旦大学出版社)
复变函数与积分变换
(修订版)
主编:马柏林
(复旦大学出版社)
——课后习题答案
1 / 39
复变函数与积分变换(修订版)课后答案(复旦大学出版社)
习题一
1. 用复数的代数形式a+ib表示下列复数
3?5i13. e?iπ/4;;(2?i)(4?3i);?7i?1i1?i
π?2?2?22 ?π?①解e?cos????i???i????isin????π?i4
?1?8?0i??1 8??1?i3???1?i3??1Im, ???????0. 22????∴Re??④解: ∵
??1?i3??????2??3?4??4?2??2??22??1?3?3???1???3??23?5i??1?7i?1613②解: 3?5i?????i
7i?1??3???1??3???82i?3????3?1+7i??1?7i?2525
?③解: ?2?i??4?3i??8?3?4i?6i?5?10i ④解: ?3?1?i?3513=?i???i i1?i2221?8?0i??1 8???1?i∴Re????1?i3?3?, . Im?1??????0?22???
2.求下列各复数的实部和虚部(z=x+iy)
z?a????(a?); z3;??1?i3?;??1?i3?;in. z?a?2??2?33k??1,??n?2k?k?. ⑤解: ∵in??kn?2k?1????1??i,
∴当n?2k时,Re?i????1?,Im?i??0;
nkn①
则
: ∵设z=x+iy
当n?2k?1时,Re?in??0,
k?x?a??iy?z?a?x?iy??a?x?a??iy?????x?a??iy??????22z?a?x?iy??a?x?a??iy?x?a??y ∴ Im??222?z?a?x?a?yRe???2?z?a??x?a??y2Im?in????1?.
3.求下列复数的模和共轭复数
?2?i;?3;(2?i)(3?2i);1?i. 2,
①解:?2?i?4?1?5.
z?a?2xy. ??22z?a???x?a??y ?2?i??2?i
?3??3
②解: 设z=x+iy ∵
z??x?iy???x?iy??x?iy???x?y?2xyi??x?iy?33222222??x?x2?y2??2xy2???y?x?y??2xy?i②解:?3?3
③解:?2?i??3?2i??2?i3?2i?5?13?65.
?2?i??3?2i???2?i???3?2i???2?i???3?2i??4?7i
?x3?3xy2??3x2y?y3?i④解:,
∴
Re?z3??x3?3xy21?i1?i2?? 222Im?z3??3x2y?y3.
?1?i??1?i?1?i? ???22?2?③解: ∵
3?1?i3??1?i3??????28????3?1??1?3???1???8????3???1??3??????22?3? ?3?????34、证明:当且仅当z?z时,z才是实数.
2 / 39
证明:若z?z,设z?x?iy,
复变函数与积分变换(修订版)课后答案(复旦大学出版社)
则有 x?iy?x?iy,从而有?2y?i?0,即y=0
∴z=x为实数.
若z=x,x∈?,则z?x?x. ∴z?z. 命题成立.
3?5i2π2π??;i;?1;?8π(1?3i);?cos?isin?. 7i?199??3①解:
?3?5i?3?5i??1?7i??
7i?1?1?7i??1?7i?5、设z,w∈?,证明: z?w≤z?w
证明∵z?w2??z?w???z?w???z?w??z?w?
?z?z?z?w?w?z?w?w38?16i19?8i17i?????e502558??π?arctan.
19其中
②解:i?ei??其中??.
i?e
iπ2π2
?z?zw?z?w?w?z?w≤2222??2Re?z?w??2
③解:?1?eiπ?eπi
④解:?8π?1?3i??16π???π.
∴?8π?1?3i??16π?e32?πi323z?w?2z?w222
?z?w?2z?w ??z?w?22π2π?cos?isin⑤解:??? 99?? ∴z?w≤z?w.
2π2π?解:∵??isin??1. ?cos99??36、设z,w∈?,证明下列不等式.
z?w?z?2Rez?w?w z?w?z?2Rez?w?w
2222??2
i?π.3i2π2π?93cos?isin?1?e?e∴? ??99??322π??2
8.计算:(1)i的三次根;(2)-1的三次根;(3)
3?3i的平方根.
z?w?z?w?2z?w22?22?
2并给出最后一个等式的几何解释.
证明:z?w?z?2Re?z?w??w在上面第五
22⑴i的三次根. 解:
3题的证明已经证明了.
下面证z?w?z?2Re?z?w??w.
222ππ??i??cos?isin??cos22??132kπ?ππ2kπ?2?isin233?k?0,1,2?
∴
z1?cosππ31?isin??i6622
∵z?w??z?w???z?w???z?w??z?w?
2.
?z?z?w?w?z?w22
2?z?2Rez?w?w.从而得证.
22??25531z2?cosπ?isinπ???i
6622∴z?w?z?w?2z?w
?22?
z3?cosπ?isinπ??969631?i 22几何意义:平行四边形两对角线平方的和等于各边的平方的和.
7.将下列复数表示为指数形式或三角形式
⑵-1的三次根 解:
3?1??cosπ?isinπ??cos132kπ+π2kπ?π?isin33?k?0,1,2?
3 / 39
复变函数与积分变换(修订版)课后答案(复旦大学出版社)
∴z1?cosπ?isinπ?1?3323 i2相切,则CA⊥L?.过C作直线平行L?,则有∠BCD=β,∠ACB=90° 故α-β=90°
z2?cosπ?isinπ??1 z3?cosπ?isinπ???5353123i 2
所以L?在α处切于圆周T的关于β的充
⑶3?3i的平方根. 解:
∴
3?3i?πi?22?4 3?3i=6???i?6?e??22????6?eπi4?12ππ??2kπ?2kπ???4?isin4?6??cos??22?14要条件是α-β=90°.
12.指出下列各式中点z所确定的平面图形,并作出草图.
(1)argz?π;(2)z?1?z;(3)1?z?i|?2;(4)Rez?Imz;?k?0,1?
iππ?∴z1?6???cos?isin??64?e8
88??πi99?84 z2?6??. cosπ?isinπ?6?e??88??1419141π(5)Imz?1且z?2.解:
(1)、argz=π.表示负实轴.
9.设z?ei2πn,n?2. 证明:1?z?i?2πn?zn?1?0
证明:∵z?e
∴zn?1,即zn?1?0.
?zn?1??0
∴?z?1??1?z?又∵n≥2. ∴z≠1 从而1?z?z2+?zn?1?0
11.设?是圆周{z:z?c?r},r?0,a?c?rei?.令
??z?a??, L???z:Im???0?b????
(2)、|z-1|=|z|.表示直线z=.
12其中b?ei?.求出L?在a切于圆周?的关于?的充分必要条件. 解:如图所示.
(3)、1<|z+i|<2
解:表示以-i为圆心,以1和2为半径的周圆所组成的圆环域。
因为L?={z: Im??z?a??=0}表示通过点a且?b?方向与b同向的直线,要使得直线在a处与圆
(4)、Re(z)>Imz.
4 / 39
相关推荐: