.
文科高考数学立体几何大题求各类体积方法
【三年真题重温】
1.【2011?新课标全国理,18】如图,四棱锥P?ABCD中,底面ABCD为平行四边形,
P∠DAB?60,AB?2AD,PD⊥底面ABCD. (Ⅰ) 证明:PA⊥BD;
(Ⅱ) 若PD?AD,求二面角A?PB?C的余弦值.
ADBCPDABC2.【2011 新课标全国文,18】如图,四棱锥P?ABCD中,底面ABCD为平行四边形.?DAB?60,AB?2AD,PD?底面ABCD. (Ⅰ) 证明:PA?BD;
.
.
(Ⅱ) 设PD?AD?1,求棱锥D?PBC的高.
根据DE?PB?PD?BD,得
3.即棱锥D?PBC的高为3.
DE?223.【2010 新课标全国理,18】如图,已知四棱锥P-ABCD的底面为等腰梯形,ABCD,AC?BD,垂足为H,PH是四棱锥的高 ,E为AD中点. (1) 证明:PE?BC
(2) 若?APB=?ADB=60°,求直线PA与平面PEH所成角的正弦值 【解析】命题意图:本题主要考查空间几何体中的位置关系、线面所成的角
等知识,考查空间想象能力以及利用向量法研究空间的位置关系以及线面角问题的能力.
.
.
4.【2010 新课标全国文,18】如图,已知四棱锥P?ABCD的底面为等腰梯形,AB∥CD,AC?BD,垂足为H,PH是四棱锥的高。
(Ⅰ)证明:平面PAC? 平面PBD; (Ⅱ)若AB?6,?APB??ADB?60°,求四棱锥P?ABCD的体积。
5.【2012 新课标全国理】(本小题满分12分) 如图,直三棱柱ABC?ABC中,
111 AC?BC?1AA12,
D是棱AA1的中点,DC1?BD
.
.
(1)证明:DC?BC
1(2)求二面角A?BD?C的大小。
11
6.【2012 新课标全国文】(本小题满分12分)
1
如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=2AA1,D是棱AA1
的中点
(I)证明:平面BDC1⊥平面BDC
(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比。
.
相关推荐: